Metamath Proof Explorer


Theorem coinitsslt

Description: If B is coinitial with C and A precedes C , then A precedes B . (Contributed by Scott Fenton, 24-Sep-2024)

Ref Expression
Assertion coinitsslt ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) → 𝐴 <<s 𝐵 )

Proof

Step Hyp Ref Expression
1 ssltex1 ( 𝐴 <<s 𝐶𝐴 ∈ V )
2 1 3ad2ant3 ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) → 𝐴 ∈ V )
3 simp1 ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) → 𝐵 ∈ 𝒫 No )
4 ssltss1 ( 𝐴 <<s 𝐶𝐴 No )
5 4 3ad2ant3 ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) → 𝐴 No )
6 3 elpwid ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) → 𝐵 No )
7 breq2 ( 𝑥 = 𝑏 → ( 𝑦 ≤s 𝑥𝑦 ≤s 𝑏 ) )
8 7 rexbidv ( 𝑥 = 𝑏 → ( ∃ 𝑦𝐶 𝑦 ≤s 𝑥 ↔ ∃ 𝑦𝐶 𝑦 ≤s 𝑏 ) )
9 simp12 ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) → ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥 )
10 simp3 ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) → 𝑏𝐵 )
11 8 9 10 rspcdva ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) → ∃ 𝑦𝐶 𝑦 ≤s 𝑏 )
12 breq1 ( 𝑦 = 𝑐 → ( 𝑦 ≤s 𝑏𝑐 ≤s 𝑏 ) )
13 12 cbvrexvw ( ∃ 𝑦𝐶 𝑦 ≤s 𝑏 ↔ ∃ 𝑐𝐶 𝑐 ≤s 𝑏 )
14 11 13 sylib ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) → ∃ 𝑐𝐶 𝑐 ≤s 𝑏 )
15 simpl13 ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝐴 <<s 𝐶 )
16 15 4 syl ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝐴 No )
17 simpl2 ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝑎𝐴 )
18 16 17 sseldd ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝑎 No )
19 ssltss2 ( 𝐴 <<s 𝐶𝐶 No )
20 15 19 syl ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝐶 No )
21 simprl ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝑐𝐶 )
22 20 21 sseldd ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝑐 No )
23 simpl1 ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) )
24 23 6 syl ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝐵 No )
25 simpl3 ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝑏𝐵 )
26 24 25 sseldd ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝑏 No )
27 15 17 21 ssltsepcd ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝑎 <s 𝑐 )
28 simprr ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝑐 ≤s 𝑏 )
29 18 22 26 27 28 sltletrd ( ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐𝐶𝑐 ≤s 𝑏 ) ) → 𝑎 <s 𝑏 )
30 14 29 rexlimddv ( ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) ∧ 𝑎𝐴𝑏𝐵 ) → 𝑎 <s 𝑏 )
31 2 3 5 6 30 ssltd ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑥𝐵𝑦𝐶 𝑦 ≤s 𝑥𝐴 <<s 𝐶 ) → 𝐴 <<s 𝐵 )