Step |
Hyp |
Ref |
Expression |
1 |
|
simp3l |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ) |
2 |
|
simp3r |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) |
3 |
|
simp1 |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → 𝐴 <<s 𝐵 ) |
4 |
|
scutbday |
⊢ ( 𝐴 <<s 𝐵 → ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ) |
6 |
|
ssltex1 |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 ∈ V ) |
7 |
3 6
|
syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → 𝐴 ∈ V ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ 𝐶 <<s { 𝑡 } ) → 𝐴 ∈ V ) |
9 |
|
ssltss1 |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
10 |
3 9
|
syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → 𝐴 ⊆ No ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ 𝐶 <<s { 𝑡 } ) → 𝐴 ⊆ No ) |
12 |
8 11
|
elpwd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ 𝐶 <<s { 𝑡 } ) → 𝐴 ∈ 𝒫 No ) |
13 |
|
simpl2l |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ) |
14 |
13
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ 𝐶 <<s { 𝑡 } ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ) |
15 |
|
simpr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ 𝐶 <<s { 𝑡 } ) → 𝐶 <<s { 𝑡 } ) |
16 |
|
cofsslt |
⊢ ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ 𝐶 <<s { 𝑡 } ) → 𝐴 <<s { 𝑡 } ) |
17 |
12 14 15 16
|
syl3anc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ 𝐶 <<s { 𝑡 } ) → 𝐴 <<s { 𝑡 } ) |
18 |
17
|
ex |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) → ( 𝐶 <<s { 𝑡 } → 𝐴 <<s { 𝑡 } ) ) |
19 |
|
ssltex2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ∈ V ) |
20 |
3 19
|
syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → 𝐵 ∈ V ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ { 𝑡 } <<s 𝐷 ) → 𝐵 ∈ V ) |
22 |
|
ssltss2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
23 |
3 22
|
syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → 𝐵 ⊆ No ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ { 𝑡 } <<s 𝐷 ) → 𝐵 ⊆ No ) |
25 |
21 24
|
elpwd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ { 𝑡 } <<s 𝐷 ) → 𝐵 ∈ 𝒫 No ) |
26 |
|
simpl2r |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) |
27 |
26
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ { 𝑡 } <<s 𝐷 ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) |
28 |
|
simpr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ { 𝑡 } <<s 𝐷 ) → { 𝑡 } <<s 𝐷 ) |
29 |
|
coinitsslt |
⊢ ( ( 𝐵 ∈ 𝒫 No ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ∧ { 𝑡 } <<s 𝐷 ) → { 𝑡 } <<s 𝐵 ) |
30 |
25 27 28 29
|
syl3anc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) ∧ { 𝑡 } <<s 𝐷 ) → { 𝑡 } <<s 𝐵 ) |
31 |
30
|
ex |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) → ( { 𝑡 } <<s 𝐷 → { 𝑡 } <<s 𝐵 ) ) |
32 |
18 31
|
anim12d |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ∧ 𝑡 ∈ No ) → ( ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) → ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) ) ) |
33 |
32
|
ss2rabdv |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ⊆ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) |
34 |
|
imass2 |
⊢ ( { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ⊆ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } → ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ⊆ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ) |
35 |
|
intss |
⊢ ( ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ⊆ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) → ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ⊆ ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ) |
36 |
33 34 35
|
3syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ⊆ ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ) |
37 |
5 36
|
eqsstrd |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ) |
38 |
|
bdayfn |
⊢ bday Fn No |
39 |
|
ssrab2 |
⊢ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ⊆ No |
40 |
|
sneq |
⊢ ( 𝑡 = ( 𝐴 |s 𝐵 ) → { 𝑡 } = { ( 𝐴 |s 𝐵 ) } ) |
41 |
40
|
breq2d |
⊢ ( 𝑡 = ( 𝐴 |s 𝐵 ) → ( 𝐶 <<s { 𝑡 } ↔ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ) ) |
42 |
40
|
breq1d |
⊢ ( 𝑡 = ( 𝐴 |s 𝐵 ) → ( { 𝑡 } <<s 𝐷 ↔ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) |
43 |
41 42
|
anbi12d |
⊢ ( 𝑡 = ( 𝐴 |s 𝐵 ) → ( ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) ↔ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) ) |
44 |
3
|
scutcld |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
45 |
|
simp3 |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) |
46 |
43 44 45
|
elrabd |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( 𝐴 |s 𝐵 ) ∈ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) |
47 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ⊆ No ∧ ( 𝐴 |s 𝐵 ) ∈ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ) |
48 |
38 39 46 47
|
mp3an12i |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ) |
49 |
|
intss1 |
⊢ ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) → ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ⊆ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
50 |
48 49
|
syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ⊆ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
51 |
37 50
|
eqssd |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ) |
52 |
|
ovex |
⊢ ( 𝐴 |s 𝐵 ) ∈ V |
53 |
52
|
snnz |
⊢ { ( 𝐴 |s 𝐵 ) } ≠ ∅ |
54 |
|
sslttr |
⊢ ( ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ∧ { ( 𝐴 |s 𝐵 ) } ≠ ∅ ) → 𝐶 <<s 𝐷 ) |
55 |
53 54
|
mp3an3 |
⊢ ( ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → 𝐶 <<s 𝐷 ) |
56 |
55
|
3ad2ant3 |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → 𝐶 <<s 𝐷 ) |
57 |
|
eqscut |
⊢ ( ( 𝐶 <<s 𝐷 ∧ ( 𝐴 |s 𝐵 ) ∈ No ) → ( ( 𝐶 |s 𝐷 ) = ( 𝐴 |s 𝐵 ) ↔ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ∧ ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ) ) ) |
58 |
56 44 57
|
syl2anc |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( ( 𝐶 |s 𝐷 ) = ( 𝐴 |s 𝐵 ) ↔ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ∧ ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐶 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐷 ) } ) ) ) ) |
59 |
1 2 51 58
|
mpbir3and |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( 𝐶 |s 𝐷 ) = ( 𝐴 |s 𝐵 ) ) |
60 |
59
|
eqcomd |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) ) |