Metamath Proof Explorer


Theorem cofcut1

Description: If C is cofinal with A and D is coinitial with B and the cut of A and B lies between C and D . Then the cut of C and D is equal to the cut of A and B . Theorem 2.6 of Gonshor p. 10. (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Assertion cofcut1 A s B x A y C x s y z B w D w s z C s A | s B A | s B s D A | s B = C | s D

Proof

Step Hyp Ref Expression
1 simp3l A s B x A y C x s y z B w D w s z C s A | s B A | s B s D C s A | s B
2 simp3r A s B x A y C x s y z B w D w s z C s A | s B A | s B s D A | s B s D
3 simp1 A s B x A y C x s y z B w D w s z C s A | s B A | s B s D A s B
4 scutbday A s B bday A | s B = bday t No | A s t t s B
5 3 4 syl A s B x A y C x s y z B w D w s z C s A | s B A | s B s D bday A | s B = bday t No | A s t t s B
6 ssltex1 A s B A V
7 3 6 syl A s B x A y C x s y z B w D w s z C s A | s B A | s B s D A V
8 7 ad2antrr A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No C s t A V
9 ssltss1 A s B A No
10 3 9 syl A s B x A y C x s y z B w D w s z C s A | s B A | s B s D A No
11 10 ad2antrr A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No C s t A No
12 8 11 elpwd A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No C s t A 𝒫 No
13 simpl2l A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No x A y C x s y
14 13 adantr A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No C s t x A y C x s y
15 simpr A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No C s t C s t
16 cofsslt A 𝒫 No x A y C x s y C s t A s t
17 12 14 15 16 syl3anc A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No C s t A s t
18 17 ex A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No C s t A s t
19 ssltex2 A s B B V
20 3 19 syl A s B x A y C x s y z B w D w s z C s A | s B A | s B s D B V
21 20 ad2antrr A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No t s D B V
22 ssltss2 A s B B No
23 3 22 syl A s B x A y C x s y z B w D w s z C s A | s B A | s B s D B No
24 23 ad2antrr A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No t s D B No
25 21 24 elpwd A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No t s D B 𝒫 No
26 simpl2r A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No z B w D w s z
27 26 adantr A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No t s D z B w D w s z
28 simpr A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No t s D t s D
29 coinitsslt B 𝒫 No z B w D w s z t s D t s B
30 25 27 28 29 syl3anc A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No t s D t s B
31 30 ex A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No t s D t s B
32 18 31 anim12d A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No C s t t s D A s t t s B
33 32 ss2rabdv A s B x A y C x s y z B w D w s z C s A | s B A | s B s D t No | C s t t s D t No | A s t t s B
34 imass2 t No | C s t t s D t No | A s t t s B bday t No | C s t t s D bday t No | A s t t s B
35 intss bday t No | C s t t s D bday t No | A s t t s B bday t No | A s t t s B bday t No | C s t t s D
36 33 34 35 3syl A s B x A y C x s y z B w D w s z C s A | s B A | s B s D bday t No | A s t t s B bday t No | C s t t s D
37 5 36 eqsstrd A s B x A y C x s y z B w D w s z C s A | s B A | s B s D bday A | s B bday t No | C s t t s D
38 bdayfn bday Fn No
39 ssrab2 t No | C s t t s D No
40 sneq t = A | s B t = A | s B
41 40 breq2d t = A | s B C s t C s A | s B
42 40 breq1d t = A | s B t s D A | s B s D
43 41 42 anbi12d t = A | s B C s t t s D C s A | s B A | s B s D
44 3 scutcld A s B x A y C x s y z B w D w s z C s A | s B A | s B s D A | s B No
45 simp3 A s B x A y C x s y z B w D w s z C s A | s B A | s B s D C s A | s B A | s B s D
46 43 44 45 elrabd A s B x A y C x s y z B w D w s z C s A | s B A | s B s D A | s B t No | C s t t s D
47 fnfvima bday Fn No t No | C s t t s D No A | s B t No | C s t t s D bday A | s B bday t No | C s t t s D
48 38 39 46 47 mp3an12i A s B x A y C x s y z B w D w s z C s A | s B A | s B s D bday A | s B bday t No | C s t t s D
49 intss1 bday A | s B bday t No | C s t t s D bday t No | C s t t s D bday A | s B
50 48 49 syl A s B x A y C x s y z B w D w s z C s A | s B A | s B s D bday t No | C s t t s D bday A | s B
51 37 50 eqssd A s B x A y C x s y z B w D w s z C s A | s B A | s B s D bday A | s B = bday t No | C s t t s D
52 ovex A | s B V
53 52 snnz A | s B
54 sslttr C s A | s B A | s B s D A | s B C s D
55 53 54 mp3an3 C s A | s B A | s B s D C s D
56 55 3ad2ant3 A s B x A y C x s y z B w D w s z C s A | s B A | s B s D C s D
57 eqscut C s D A | s B No C | s D = A | s B C s A | s B A | s B s D bday A | s B = bday t No | C s t t s D
58 56 44 57 syl2anc A s B x A y C x s y z B w D w s z C s A | s B A | s B s D C | s D = A | s B C s A | s B A | s B s D bday A | s B = bday t No | C s t t s D
59 1 2 51 58 mpbir3and A s B x A y C x s y z B w D w s z C s A | s B A | s B s D C | s D = A | s B
60 59 eqcomd A s B x A y C x s y z B w D w s z C s A | s B A | s B s D A | s B = C | s D