| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofid1a.i |
|- I = ( idFunc ` D ) |
| 2 |
|
cofid1a.b |
|- B = ( Base ` D ) |
| 3 |
|
cofid1a.x |
|- ( ph -> X e. B ) |
| 4 |
|
cofid1a.f |
|- ( ph -> F e. ( D Func E ) ) |
| 5 |
|
cofid1a.g |
|- ( ph -> G e. ( E Func D ) ) |
| 6 |
|
cofid1a.o |
|- ( ph -> ( G o.func F ) = I ) |
| 7 |
|
cofid2a.y |
|- ( ph -> Y e. B ) |
| 8 |
|
cofid2a.h |
|- H = ( Hom ` D ) |
| 9 |
|
cofid2a.r |
|- ( ph -> R e. ( X H Y ) ) |
| 10 |
6
|
fveq2d |
|- ( ph -> ( 2nd ` ( G o.func F ) ) = ( 2nd ` I ) ) |
| 11 |
10
|
oveqd |
|- ( ph -> ( X ( 2nd ` ( G o.func F ) ) Y ) = ( X ( 2nd ` I ) Y ) ) |
| 12 |
11
|
fveq1d |
|- ( ph -> ( ( X ( 2nd ` ( G o.func F ) ) Y ) ` R ) = ( ( X ( 2nd ` I ) Y ) ` R ) ) |
| 13 |
2 4 5 3 7 8 9
|
cofu2 |
|- ( ph -> ( ( X ( 2nd ` ( G o.func F ) ) Y ) ` R ) = ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) ) |
| 14 |
4
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) ) |
| 15 |
14
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
| 16 |
1 2 15 8 3 7 9
|
idfu2 |
|- ( ph -> ( ( X ( 2nd ` I ) Y ) ` R ) = R ) |
| 17 |
12 13 16
|
3eqtr3d |
|- ( ph -> ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) = R ) |