| Step |
Hyp |
Ref |
Expression |
| 1 |
|
comfffval2.o |
|- O = ( comf ` C ) |
| 2 |
|
comfffval2.b |
|- B = ( Base ` C ) |
| 3 |
|
comfffval2.h |
|- H = ( Homf ` C ) |
| 4 |
|
comfffval2.x |
|- .x. = ( comp ` C ) |
| 5 |
|
comffval2.x |
|- ( ph -> X e. B ) |
| 6 |
|
comffval2.y |
|- ( ph -> Y e. B ) |
| 7 |
|
comffval2.z |
|- ( ph -> Z e. B ) |
| 8 |
|
comfval2.f |
|- ( ph -> F e. ( X H Y ) ) |
| 9 |
|
comfval2.g |
|- ( ph -> G e. ( Y H Z ) ) |
| 10 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 11 |
3 2 10 5 6
|
homfval |
|- ( ph -> ( X H Y ) = ( X ( Hom ` C ) Y ) ) |
| 12 |
8 11
|
eleqtrd |
|- ( ph -> F e. ( X ( Hom ` C ) Y ) ) |
| 13 |
3 2 10 6 7
|
homfval |
|- ( ph -> ( Y H Z ) = ( Y ( Hom ` C ) Z ) ) |
| 14 |
9 13
|
eleqtrd |
|- ( ph -> G e. ( Y ( Hom ` C ) Z ) ) |
| 15 |
1 2 10 4 5 6 7 12 14
|
comfval |
|- ( ph -> ( G ( <. X , Y >. O Z ) F ) = ( G ( <. X , Y >. .x. Z ) F ) ) |