| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfcv |  |-  F/_ z _V | 
						
							| 2 |  | nfab1 |  |-  F/_ z { z | ph } | 
						
							| 3 | 1 2 | nfdif |  |-  F/_ z ( _V \ { z | ph } ) | 
						
							| 4 |  | nfab1 |  |-  F/_ z { z | -. ph } | 
						
							| 5 | 3 4 | cleqf |  |-  ( ( _V \ { z | ph } ) = { z | -. ph } <-> A. z ( z e. ( _V \ { z | ph } ) <-> z e. { z | -. ph } ) ) | 
						
							| 6 |  | abid |  |-  ( z e. { z | ph } <-> ph ) | 
						
							| 7 | 6 | notbii |  |-  ( -. z e. { z | ph } <-> -. ph ) | 
						
							| 8 |  | velcomp |  |-  ( z e. ( _V \ { z | ph } ) <-> -. z e. { z | ph } ) | 
						
							| 9 |  | abid |  |-  ( z e. { z | -. ph } <-> -. ph ) | 
						
							| 10 | 7 8 9 | 3bitr4i |  |-  ( z e. ( _V \ { z | ph } ) <-> z e. { z | -. ph } ) | 
						
							| 11 | 5 10 | mpgbir |  |-  ( _V \ { z | ph } ) = { z | -. ph } |