| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcv |
|- F/_ z _V |
| 2 |
|
nfab1 |
|- F/_ z { z | ph } |
| 3 |
1 2
|
nfdif |
|- F/_ z ( _V \ { z | ph } ) |
| 4 |
|
nfab1 |
|- F/_ z { z | -. ph } |
| 5 |
3 4
|
cleqf |
|- ( ( _V \ { z | ph } ) = { z | -. ph } <-> A. z ( z e. ( _V \ { z | ph } ) <-> z e. { z | -. ph } ) ) |
| 6 |
|
abid |
|- ( z e. { z | ph } <-> ph ) |
| 7 |
6
|
notbii |
|- ( -. z e. { z | ph } <-> -. ph ) |
| 8 |
|
velcomp |
|- ( z e. ( _V \ { z | ph } ) <-> -. z e. { z | ph } ) |
| 9 |
|
abid |
|- ( z e. { z | -. ph } <-> -. ph ) |
| 10 |
7 8 9
|
3bitr4i |
|- ( z e. ( _V \ { z | ph } ) <-> z e. { z | -. ph } ) |
| 11 |
5 10
|
mpgbir |
|- ( _V \ { z | ph } ) = { z | -. ph } |