Metamath Proof Explorer


Theorem compab

Description: Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion compab ( V ∖ { 𝑧𝜑 } ) = { 𝑧 ∣ ¬ 𝜑 }

Proof

Step Hyp Ref Expression
1 nfcv 𝑧 V
2 nfab1 𝑧 { 𝑧𝜑 }
3 1 2 nfdif 𝑧 ( V ∖ { 𝑧𝜑 } )
4 nfab1 𝑧 { 𝑧 ∣ ¬ 𝜑 }
5 3 4 cleqf ( ( V ∖ { 𝑧𝜑 } ) = { 𝑧 ∣ ¬ 𝜑 } ↔ ∀ 𝑧 ( 𝑧 ∈ ( V ∖ { 𝑧𝜑 } ) ↔ 𝑧 ∈ { 𝑧 ∣ ¬ 𝜑 } ) )
6 abid ( 𝑧 ∈ { 𝑧𝜑 } ↔ 𝜑 )
7 6 notbii ( ¬ 𝑧 ∈ { 𝑧𝜑 } ↔ ¬ 𝜑 )
8 velcomp ( 𝑧 ∈ ( V ∖ { 𝑧𝜑 } ) ↔ ¬ 𝑧 ∈ { 𝑧𝜑 } )
9 abid ( 𝑧 ∈ { 𝑧 ∣ ¬ 𝜑 } ↔ ¬ 𝜑 )
10 7 8 9 3bitr4i ( 𝑧 ∈ ( V ∖ { 𝑧𝜑 } ) ↔ 𝑧 ∈ { 𝑧 ∣ ¬ 𝜑 } )
11 5 10 mpgbir ( V ∖ { 𝑧𝜑 } ) = { 𝑧 ∣ ¬ 𝜑 }