Metamath Proof Explorer


Theorem compab

Description: Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion compab V z | φ = z | ¬ φ

Proof

Step Hyp Ref Expression
1 nfcv _ z V
2 nfab1 _ z z | φ
3 1 2 nfdif _ z V z | φ
4 nfab1 _ z z | ¬ φ
5 3 4 cleqf V z | φ = z | ¬ φ z z V z | φ z z | ¬ φ
6 abid z z | φ φ
7 6 notbii ¬ z z | φ ¬ φ
8 velcomp z V z | φ ¬ z z | φ
9 abid z z | ¬ φ ¬ φ
10 7 8 9 3bitr4i z V z | φ z z | ¬ φ
11 5 10 mpgbir V z | φ = z | ¬ φ