Step |
Hyp |
Ref |
Expression |
1 |
|
pire |
|- _pi e. RR |
2 |
|
2re |
|- 2 e. RR |
3 |
2 1
|
remulcli |
|- ( 2 x. _pi ) e. RR |
4 |
3
|
rexri |
|- ( 2 x. _pi ) e. RR* |
5 |
|
elico2 |
|- ( ( _pi e. RR /\ ( 2 x. _pi ) e. RR* ) -> ( A e. ( _pi [,) ( 2 x. _pi ) ) <-> ( A e. RR /\ _pi <_ A /\ A < ( 2 x. _pi ) ) ) ) |
6 |
1 4 5
|
mp2an |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) <-> ( A e. RR /\ _pi <_ A /\ A < ( 2 x. _pi ) ) ) |
7 |
6
|
simp1bi |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> A e. RR ) |
8 |
|
0red |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> 0 e. RR ) |
9 |
1
|
a1i |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> _pi e. RR ) |
10 |
|
pipos |
|- 0 < _pi |
11 |
10
|
a1i |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> 0 < _pi ) |
12 |
6
|
simp2bi |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> _pi <_ A ) |
13 |
8 9 7 11 12
|
ltletrd |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> 0 < A ) |
14 |
6
|
simp3bi |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> A < ( 2 x. _pi ) ) |
15 |
|
0xr |
|- 0 e. RR* |
16 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( 2 x. _pi ) e. RR* ) -> ( A e. ( 0 (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ 0 < A /\ A < ( 2 x. _pi ) ) ) ) |
17 |
15 4 16
|
mp2an |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ 0 < A /\ A < ( 2 x. _pi ) ) ) |
18 |
7 13 14 17
|
syl3anbrc |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> A e. ( 0 (,) ( 2 x. _pi ) ) ) |
19 |
|
cos02pilt1 |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) < 1 ) |
20 |
18 19
|
syl |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> ( cos ` A ) < 1 ) |