Step |
Hyp |
Ref |
Expression |
1 |
|
ssbr |
|- ( A C_ B -> ( x A y -> x B y ) ) |
2 |
|
ssbr |
|- ( A C_ B -> ( x A z -> x B z ) ) |
3 |
1 2
|
anim12d |
|- ( A C_ B -> ( ( x A y /\ x A z ) -> ( x B y /\ x B z ) ) ) |
4 |
3
|
eximdv |
|- ( A C_ B -> ( E. x ( x A y /\ x A z ) -> E. x ( x B y /\ x B z ) ) ) |
5 |
4
|
ssopab2dv |
|- ( A C_ B -> { <. y , z >. | E. x ( x A y /\ x A z ) } C_ { <. y , z >. | E. x ( x B y /\ x B z ) } ) |
6 |
|
df-coss |
|- ,~ A = { <. y , z >. | E. x ( x A y /\ x A z ) } |
7 |
|
df-coss |
|- ,~ B = { <. y , z >. | E. x ( x B y /\ x B z ) } |
8 |
5 6 7
|
3sstr4g |
|- ( A C_ B -> ,~ A C_ ,~ B ) |