Step |
Hyp |
Ref |
Expression |
1 |
|
ssbr |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑦 ) ) |
2 |
|
ssbr |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 𝐴 𝑧 → 𝑥 𝐵 𝑧 ) ) |
3 |
1 2
|
anim12d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 ∧ 𝑥 𝐵 𝑧 ) ) ) |
4 |
3
|
eximdv |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → ∃ 𝑥 ( 𝑥 𝐵 𝑦 ∧ 𝑥 𝐵 𝑧 ) ) ) |
5 |
4
|
ssopab2dv |
⊢ ( 𝐴 ⊆ 𝐵 → { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) } ⊆ { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑥 𝐵 𝑦 ∧ 𝑥 𝐵 𝑧 ) } ) |
6 |
|
df-coss |
⊢ ≀ 𝐴 = { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) } |
7 |
|
df-coss |
⊢ ≀ 𝐵 = { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑥 𝐵 𝑦 ∧ 𝑥 𝐵 𝑧 ) } |
8 |
5 6 7
|
3sstr4g |
⊢ ( 𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵 ) |