| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphipcj.h |
|- ., = ( .i ` W ) |
| 2 |
|
cphipcj.v |
|- V = ( Base ` W ) |
| 3 |
|
cphdir.P |
|- .+ = ( +g ` W ) |
| 4 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
| 5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 6 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
| 7 |
5 1 2 3 6
|
ipdir |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .+ B ) ., C ) = ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) |
| 8 |
4 7
|
sylan |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .+ B ) ., C ) = ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) |
| 9 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
| 10 |
5
|
clmadd |
|- ( W e. CMod -> + = ( +g ` ( Scalar ` W ) ) ) |
| 11 |
9 10
|
syl |
|- ( W e. CPreHil -> + = ( +g ` ( Scalar ` W ) ) ) |
| 12 |
11
|
adantr |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> + = ( +g ` ( Scalar ` W ) ) ) |
| 13 |
12
|
oveqd |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A ., C ) + ( B ., C ) ) = ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) |
| 14 |
8 13
|
eqtr4d |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .+ B ) ., C ) = ( ( A ., C ) + ( B ., C ) ) ) |