| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdf |
|- ( F e. Word A -> F : ( 0 ..^ ( # ` F ) ) --> A ) |
| 2 |
|
df-f1 |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A <-> ( F : ( 0 ..^ ( # ` F ) ) --> A /\ Fun `' F ) ) |
| 3 |
2
|
biimpri |
|- ( ( F : ( 0 ..^ ( # ` F ) ) --> A /\ Fun `' F ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| 4 |
1 3
|
sylan |
|- ( ( F e. Word A /\ Fun `' F ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| 5 |
4
|
3adant3 |
|- ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| 6 |
5
|
adantr |
|- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| 7 |
|
simpl3 |
|- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> S e. ZZ ) |
| 8 |
|
simpr |
|- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> G = ( F cyclShift S ) ) |
| 9 |
|
cshf1 |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ S e. ZZ /\ G = ( F cyclShift S ) ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| 10 |
6 7 8 9
|
syl3anc |
|- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| 11 |
10
|
ex |
|- ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) -> ( G = ( F cyclShift S ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) ) |
| 12 |
|
df-f1 |
|- ( G : ( 0 ..^ ( # ` F ) ) -1-1-> A <-> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ Fun `' G ) ) |
| 13 |
12
|
simprbi |
|- ( G : ( 0 ..^ ( # ` F ) ) -1-1-> A -> Fun `' G ) |
| 14 |
11 13
|
syl6 |
|- ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) -> ( G = ( F cyclShift S ) -> Fun `' G ) ) |