| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1f |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A -> F : ( 0 ..^ ( # ` F ) ) --> A ) | 
						
							| 2 |  | iswrdi |  |-  ( F : ( 0 ..^ ( # ` F ) ) --> A -> F e. Word A ) | 
						
							| 3 | 1 2 | syl |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A -> F e. Word A ) | 
						
							| 4 |  | cshwf |  |-  ( ( F e. Word A /\ S e. ZZ ) -> ( F cyclShift S ) : ( 0 ..^ ( # ` F ) ) --> A ) | 
						
							| 5 | 4 | 3adant1 |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) -> ( F cyclShift S ) : ( 0 ..^ ( # ` F ) ) --> A ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> ( F cyclShift S ) : ( 0 ..^ ( # ` F ) ) --> A ) | 
						
							| 7 |  | feq1 |  |-  ( G = ( F cyclShift S ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A <-> ( F cyclShift S ) : ( 0 ..^ ( # ` F ) ) --> A ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A <-> ( F cyclShift S ) : ( 0 ..^ ( # ` F ) ) --> A ) ) | 
						
							| 9 | 6 8 | mpbird |  |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> G : ( 0 ..^ ( # ` F ) ) --> A ) | 
						
							| 10 |  | dff13 |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A <-> ( F : ( 0 ..^ ( # ` F ) ) --> A /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) | 
						
							| 11 |  | fveq1 |  |-  ( G = ( F cyclShift S ) -> ( G ` i ) = ( ( F cyclShift S ) ` i ) ) | 
						
							| 12 | 11 | 3ad2ant1 |  |-  ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( G ` i ) = ( ( F cyclShift S ) ` i ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( G ` i ) = ( ( F cyclShift S ) ` i ) ) | 
						
							| 14 |  | cshwidxmod |  |-  ( ( F e. Word A /\ S e. ZZ /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) | 
						
							| 15 | 14 | 3expia |  |-  ( ( F e. Word A /\ S e. ZZ ) -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 16 | 15 | 3adant1 |  |-  ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 17 | 16 | com12 |  |-  ( i e. ( 0 ..^ ( # ` F ) ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 19 | 18 | impcom |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) | 
						
							| 20 | 13 19 | eqtrd |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( G ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) | 
						
							| 21 |  | fveq1 |  |-  ( G = ( F cyclShift S ) -> ( G ` j ) = ( ( F cyclShift S ) ` j ) ) | 
						
							| 22 | 21 | 3ad2ant1 |  |-  ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( G ` j ) = ( ( F cyclShift S ) ` j ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( G ` j ) = ( ( F cyclShift S ) ` j ) ) | 
						
							| 24 |  | cshwidxmod |  |-  ( ( F e. Word A /\ S e. ZZ /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) | 
						
							| 25 | 24 | 3expia |  |-  ( ( F e. Word A /\ S e. ZZ ) -> ( j e. ( 0 ..^ ( # ` F ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 26 | 25 | 3adant1 |  |-  ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( j e. ( 0 ..^ ( # ` F ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 27 | 26 | adantld |  |-  ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 28 | 27 | imp |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) | 
						
							| 29 | 23 28 | eqtrd |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( G ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) | 
						
							| 30 | 20 29 | eqeq12d |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( G ` i ) = ( G ` j ) <-> ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 31 | 30 | adantlr |  |-  ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( G ` i ) = ( G ` j ) <-> ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 32 |  | elfzo0 |  |-  ( i e. ( 0 ..^ ( # ` F ) ) <-> ( i e. NN0 /\ ( # ` F ) e. NN /\ i < ( # ` F ) ) ) | 
						
							| 33 |  | nn0z |  |-  ( i e. NN0 -> i e. ZZ ) | 
						
							| 34 | 33 | adantr |  |-  ( ( i e. NN0 /\ ( # ` F ) e. NN ) -> i e. ZZ ) | 
						
							| 35 | 34 | adantl |  |-  ( ( S e. ZZ /\ ( i e. NN0 /\ ( # ` F ) e. NN ) ) -> i e. ZZ ) | 
						
							| 36 |  | simpl |  |-  ( ( S e. ZZ /\ ( i e. NN0 /\ ( # ` F ) e. NN ) ) -> S e. ZZ ) | 
						
							| 37 | 35 36 | zaddcld |  |-  ( ( S e. ZZ /\ ( i e. NN0 /\ ( # ` F ) e. NN ) ) -> ( i + S ) e. ZZ ) | 
						
							| 38 |  | simpr |  |-  ( ( i e. NN0 /\ ( # ` F ) e. NN ) -> ( # ` F ) e. NN ) | 
						
							| 39 | 38 | adantl |  |-  ( ( S e. ZZ /\ ( i e. NN0 /\ ( # ` F ) e. NN ) ) -> ( # ` F ) e. NN ) | 
						
							| 40 | 37 39 | jca |  |-  ( ( S e. ZZ /\ ( i e. NN0 /\ ( # ` F ) e. NN ) ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) | 
						
							| 41 | 40 | ex |  |-  ( S e. ZZ -> ( ( i e. NN0 /\ ( # ` F ) e. NN ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 42 | 41 | 3ad2ant3 |  |-  ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i e. NN0 /\ ( # ` F ) e. NN ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 43 | 42 | com12 |  |-  ( ( i e. NN0 /\ ( # ` F ) e. NN ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 44 | 43 | 3adant3 |  |-  ( ( i e. NN0 /\ ( # ` F ) e. NN /\ i < ( # ` F ) ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 45 | 32 44 | sylbi |  |-  ( i e. ( 0 ..^ ( # ` F ) ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 47 | 46 | impcom |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) | 
						
							| 48 |  | zmodfzo |  |-  ( ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) -> ( ( i + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( i + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 50 |  | elfzo0 |  |-  ( j e. ( 0 ..^ ( # ` F ) ) <-> ( j e. NN0 /\ ( # ` F ) e. NN /\ j < ( # ` F ) ) ) | 
						
							| 51 |  | nn0z |  |-  ( j e. NN0 -> j e. ZZ ) | 
						
							| 52 | 51 | adantr |  |-  ( ( j e. NN0 /\ ( # ` F ) e. NN ) -> j e. ZZ ) | 
						
							| 53 | 52 | adantl |  |-  ( ( S e. ZZ /\ ( j e. NN0 /\ ( # ` F ) e. NN ) ) -> j e. ZZ ) | 
						
							| 54 |  | simpl |  |-  ( ( S e. ZZ /\ ( j e. NN0 /\ ( # ` F ) e. NN ) ) -> S e. ZZ ) | 
						
							| 55 | 53 54 | zaddcld |  |-  ( ( S e. ZZ /\ ( j e. NN0 /\ ( # ` F ) e. NN ) ) -> ( j + S ) e. ZZ ) | 
						
							| 56 |  | simpr |  |-  ( ( j e. NN0 /\ ( # ` F ) e. NN ) -> ( # ` F ) e. NN ) | 
						
							| 57 | 56 | adantl |  |-  ( ( S e. ZZ /\ ( j e. NN0 /\ ( # ` F ) e. NN ) ) -> ( # ` F ) e. NN ) | 
						
							| 58 | 55 57 | jca |  |-  ( ( S e. ZZ /\ ( j e. NN0 /\ ( # ` F ) e. NN ) ) -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) | 
						
							| 59 | 58 | expcom |  |-  ( ( j e. NN0 /\ ( # ` F ) e. NN ) -> ( S e. ZZ -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 60 | 59 | 3adant3 |  |-  ( ( j e. NN0 /\ ( # ` F ) e. NN /\ j < ( # ` F ) ) -> ( S e. ZZ -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 61 | 50 60 | sylbi |  |-  ( j e. ( 0 ..^ ( # ` F ) ) -> ( S e. ZZ -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 62 | 61 | com12 |  |-  ( S e. ZZ -> ( j e. ( 0 ..^ ( # ` F ) ) -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 63 | 62 | 3ad2ant3 |  |-  ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( j e. ( 0 ..^ ( # ` F ) ) -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 64 | 63 | adantld |  |-  ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) | 
						
							| 65 | 64 | imp |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) | 
						
							| 66 |  | zmodfzo |  |-  ( ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) -> ( ( j + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 67 | 65 66 | syl |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( j + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 68 |  | fveqeq2 |  |-  ( x = ( ( i + S ) mod ( # ` F ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` y ) ) ) | 
						
							| 69 |  | eqeq1 |  |-  ( x = ( ( i + S ) mod ( # ` F ) ) -> ( x = y <-> ( ( i + S ) mod ( # ` F ) ) = y ) ) | 
						
							| 70 | 68 69 | imbi12d |  |-  ( x = ( ( i + S ) mod ( # ` F ) ) -> ( ( ( F ` x ) = ( F ` y ) -> x = y ) <-> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` y ) -> ( ( i + S ) mod ( # ` F ) ) = y ) ) ) | 
						
							| 71 |  | fveq2 |  |-  ( y = ( ( j + S ) mod ( # ` F ) ) -> ( F ` y ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) | 
						
							| 72 | 71 | eqeq2d |  |-  ( y = ( ( j + S ) mod ( # ` F ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` y ) <-> ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 73 |  | eqeq2 |  |-  ( y = ( ( j + S ) mod ( # ` F ) ) -> ( ( ( i + S ) mod ( # ` F ) ) = y <-> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) | 
						
							| 74 | 72 73 | imbi12d |  |-  ( y = ( ( j + S ) mod ( # ` F ) ) -> ( ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` y ) -> ( ( i + S ) mod ( # ` F ) ) = y ) <-> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 75 | 70 74 | rspc2v |  |-  ( ( ( ( i + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) /\ ( ( j + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 76 | 49 67 75 | syl2anc |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) ) | 
						
							| 77 |  | simpr |  |-  ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) /\ ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) | 
						
							| 78 |  | addmodlteq |  |-  ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) /\ S e. ZZ ) -> ( ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) <-> i = j ) ) | 
						
							| 79 | 78 | 3expa |  |-  ( ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) /\ S e. ZZ ) -> ( ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) <-> i = j ) ) | 
						
							| 80 | 79 | ancoms |  |-  ( ( S e. ZZ /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) <-> i = j ) ) | 
						
							| 81 | 80 | bicomd |  |-  ( ( S e. ZZ /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( i = j <-> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) | 
						
							| 82 | 81 | 3ad2antl3 |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( i = j <-> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) /\ ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) -> ( i = j <-> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) | 
						
							| 84 | 77 83 | sylibrd |  |-  ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) /\ ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> i = j ) ) | 
						
							| 85 | 84 | ex |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> i = j ) ) ) | 
						
							| 86 | 76 85 | syld |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> i = j ) ) ) | 
						
							| 87 | 86 | impancom |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) -> ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> i = j ) ) ) | 
						
							| 88 | 87 | imp |  |-  ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> i = j ) ) | 
						
							| 89 | 31 88 | sylbid |  |-  ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( G ` i ) = ( G ` j ) -> i = j ) ) | 
						
							| 90 | 89 | ralrimivva |  |-  ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) | 
						
							| 91 | 90 | 3exp1 |  |-  ( G = ( F cyclShift S ) -> ( F e. Word A -> ( S e. ZZ -> ( A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) | 
						
							| 92 | 91 | com14 |  |-  ( A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) -> ( F e. Word A -> ( S e. ZZ -> ( G = ( F cyclShift S ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) | 
						
							| 93 | 92 | adantl |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) --> A /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) -> ( F e. Word A -> ( S e. ZZ -> ( G = ( F cyclShift S ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) | 
						
							| 94 | 10 93 | sylbi |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A -> ( F e. Word A -> ( S e. ZZ -> ( G = ( F cyclShift S ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) | 
						
							| 95 | 94 | 3imp1 |  |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) | 
						
							| 96 | 9 95 | jca |  |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) | 
						
							| 97 | 96 | 3exp1 |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A -> ( F e. Word A -> ( S e. ZZ -> ( G = ( F cyclShift S ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) ) | 
						
							| 98 | 3 97 | mpd |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A -> ( S e. ZZ -> ( G = ( F cyclShift S ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) | 
						
							| 99 | 98 | 3imp |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ S e. ZZ /\ G = ( F cyclShift S ) ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) | 
						
							| 100 |  | dff13 |  |-  ( G : ( 0 ..^ ( # ` F ) ) -1-1-> A <-> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) | 
						
							| 101 | 99 100 | sylibr |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ S e. ZZ /\ G = ( F cyclShift S ) ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |