Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrrusgr.v |
|- V = ( Vtx ` G ) |
2 |
|
simpr |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> G e. ComplUSGraph ) |
3 |
1
|
fusgrvtxfi |
|- ( G e. FinUSGraph -> V e. Fin ) |
4 |
3
|
adantr |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> V e. Fin ) |
5 |
4
|
adantr |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> V e. Fin ) |
6 |
|
simpr |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> V =/= (/) ) |
7 |
6
|
adantr |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> V =/= (/) ) |
8 |
1
|
cusgrrusgr |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G RegUSGraph ( ( # ` V ) - 1 ) ) |
9 |
2 5 7 8
|
syl3anc |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> G RegUSGraph ( ( # ` V ) - 1 ) ) |
10 |
9
|
ex |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G e. ComplUSGraph -> G RegUSGraph ( ( # ` V ) - 1 ) ) ) |
11 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
12 |
1 11
|
rusgrprop0 |
|- ( G RegUSGraph ( ( # ` V ) - 1 ) -> ( G e. USGraph /\ ( ( # ` V ) - 1 ) e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) |
13 |
12
|
simp3d |
|- ( G RegUSGraph ( ( # ` V ) - 1 ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) |
14 |
1
|
vdiscusgr |
|- ( G e. FinUSGraph -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) ) |
15 |
14
|
adantr |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) ) |
16 |
13 15
|
syl5 |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G RegUSGraph ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) ) |
17 |
10 16
|
impbid |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G e. ComplUSGraph <-> G RegUSGraph ( ( # ` V ) - 1 ) ) ) |