| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cusgrrusgr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | simpr |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> G e. ComplUSGraph ) | 
						
							| 3 | 1 | fusgrvtxfi |  |-  ( G e. FinUSGraph -> V e. Fin ) | 
						
							| 4 | 3 | adantr |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> V e. Fin ) | 
						
							| 5 | 4 | adantr |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> V e. Fin ) | 
						
							| 6 |  | simpr |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> V =/= (/) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> V =/= (/) ) | 
						
							| 8 | 1 | cusgrrusgr |  |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G RegUSGraph ( ( # ` V ) - 1 ) ) | 
						
							| 9 | 2 5 7 8 | syl3anc |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> G RegUSGraph ( ( # ` V ) - 1 ) ) | 
						
							| 10 | 9 | ex |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G e. ComplUSGraph -> G RegUSGraph ( ( # ` V ) - 1 ) ) ) | 
						
							| 11 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 12 | 1 11 | rusgrprop0 |  |-  ( G RegUSGraph ( ( # ` V ) - 1 ) -> ( G e. USGraph /\ ( ( # ` V ) - 1 ) e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) | 
						
							| 13 | 12 | simp3d |  |-  ( G RegUSGraph ( ( # ` V ) - 1 ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) | 
						
							| 14 | 1 | vdiscusgr |  |-  ( G e. FinUSGraph -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) ) | 
						
							| 16 | 13 15 | syl5 |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G RegUSGraph ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) ) | 
						
							| 17 | 10 16 | impbid |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G e. ComplUSGraph <-> G RegUSGraph ( ( # ` V ) - 1 ) ) ) |