| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cusgrrusgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | simpr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  𝐺  ∈  ComplUSGraph )  →  𝐺  ∈  ComplUSGraph ) | 
						
							| 3 | 1 | fusgrvtxfi | ⊢ ( 𝐺  ∈  FinUSGraph  →  𝑉  ∈  Fin ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  𝑉  ∈  Fin ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  𝐺  ∈  ComplUSGraph )  →  𝑉  ∈  Fin ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  𝑉  ≠  ∅ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  𝐺  ∈  ComplUSGraph )  →  𝑉  ≠  ∅ ) | 
						
							| 8 | 1 | cusgrrusgr | ⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 ) ) | 
						
							| 9 | 2 5 7 8 | syl3anc | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  𝐺  ∈  ComplUSGraph )  →  𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 ) ) | 
						
							| 10 | 9 | ex | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  ∈  ComplUSGraph  →  𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 12 | 1 11 | rusgrprop0 | ⊢ ( 𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 )  →  ( 𝐺  ∈  USGraph  ∧  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) ) | 
						
							| 13 | 12 | simp3d | ⊢ ( 𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) | 
						
							| 14 | 1 | vdiscusgr | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 )  →  𝐺  ∈  ComplUSGraph ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 )  →  𝐺  ∈  ComplUSGraph ) ) | 
						
							| 16 | 13 15 | syl5 | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 )  →  𝐺  ∈  ComplUSGraph ) ) | 
						
							| 17 | 10 16 | impbid | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  ∈  ComplUSGraph  ↔  𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 ) ) ) |