| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cusgrrusgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | cusgrusgr | ⊢ ( 𝐺  ∈  ComplUSGraph  →  𝐺  ∈  USGraph ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝐺  ∈  USGraph ) | 
						
							| 4 |  | hashnncl | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ↔  𝑉  ≠  ∅ ) ) | 
						
							| 5 |  | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | nn0xnn0d | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0* ) | 
						
							| 7 | 4 6 | biimtrrdi | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0* ) ) | 
						
							| 8 | 7 | imp | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0* ) | 
						
							| 9 | 8 | 3adant1 | ⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0* ) | 
						
							| 10 |  | cusgrcplgr | ⊢ ( 𝐺  ∈  ComplUSGraph  →  𝐺  ∈  ComplGraph ) | 
						
							| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝐺  ∈  ComplGraph ) | 
						
							| 12 | 1 | nbcplgr | ⊢ ( ( 𝐺  ∈  ComplGraph  ∧  𝑣  ∈  𝑉 )  →  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) ) | 
						
							| 13 | 11 12 | sylan | ⊢ ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  →  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ∀ 𝑣  ∈  𝑉 ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) ) | 
						
							| 15 | 3 | anim1i | ⊢ ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  →  ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) )  →  ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 ) ) | 
						
							| 17 | 1 | hashnbusgrvd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ♯ ‘ ( 𝑉  ∖  { 𝑣 } ) ) ) | 
						
							| 20 |  | hashdifsn | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ ( 𝑉  ∖  { 𝑣 } ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) | 
						
							| 21 | 20 | 3ad2antl2 | ⊢ ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ ( 𝑉  ∖  { 𝑣 } ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) | 
						
							| 22 | 19 21 | sylan9eqr | ⊢ ( ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) | 
						
							| 23 | 18 22 | eqtr3d | ⊢ ( ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) | 
						
							| 24 | 23 | ex | ⊢ ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) ) | 
						
							| 25 | 24 | ralimdva | ⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) ) | 
						
							| 26 | 14 25 | mpd | ⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) | 
						
							| 27 |  | simp1 | ⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝐺  ∈  ComplUSGraph ) | 
						
							| 28 |  | ovex | ⊢ ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  V | 
						
							| 29 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 30 | 1 29 | isrusgr0 | ⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  V )  →  ( 𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 )  ↔  ( 𝐺  ∈  USGraph  ∧  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) ) ) | 
						
							| 31 | 27 28 30 | sylancl | ⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 )  ↔  ( 𝐺  ∈  USGraph  ∧  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) ) ) | 
						
							| 32 | 3 9 26 31 | mpbir3and | ⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 ) ) |