Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrrusgr.v |
|- V = ( Vtx ` G ) |
2 |
|
cusgrusgr |
|- ( G e. ComplUSGraph -> G e. USGraph ) |
3 |
2
|
3ad2ant1 |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G e. USGraph ) |
4 |
|
hashnncl |
|- ( V e. Fin -> ( ( # ` V ) e. NN <-> V =/= (/) ) ) |
5 |
|
nnm1nn0 |
|- ( ( # ` V ) e. NN -> ( ( # ` V ) - 1 ) e. NN0 ) |
6 |
5
|
nn0xnn0d |
|- ( ( # ` V ) e. NN -> ( ( # ` V ) - 1 ) e. NN0* ) |
7 |
4 6
|
syl6bir |
|- ( V e. Fin -> ( V =/= (/) -> ( ( # ` V ) - 1 ) e. NN0* ) ) |
8 |
7
|
imp |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) - 1 ) e. NN0* ) |
9 |
8
|
3adant1 |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) - 1 ) e. NN0* ) |
10 |
|
cusgrcplgr |
|- ( G e. ComplUSGraph -> G e. ComplGraph ) |
11 |
10
|
3ad2ant1 |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G e. ComplGraph ) |
12 |
1
|
nbcplgr |
|- ( ( G e. ComplGraph /\ v e. V ) -> ( G NeighbVtx v ) = ( V \ { v } ) ) |
13 |
11 12
|
sylan |
|- ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( G NeighbVtx v ) = ( V \ { v } ) ) |
14 |
13
|
ralrimiva |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> A. v e. V ( G NeighbVtx v ) = ( V \ { v } ) ) |
15 |
3
|
anim1i |
|- ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( G e. USGraph /\ v e. V ) ) |
16 |
15
|
adantr |
|- ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( G e. USGraph /\ v e. V ) ) |
17 |
1
|
hashnbusgrvd |
|- ( ( G e. USGraph /\ v e. V ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) |
18 |
16 17
|
syl |
|- ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) |
19 |
|
fveq2 |
|- ( ( G NeighbVtx v ) = ( V \ { v } ) -> ( # ` ( G NeighbVtx v ) ) = ( # ` ( V \ { v } ) ) ) |
20 |
|
hashdifsn |
|- ( ( V e. Fin /\ v e. V ) -> ( # ` ( V \ { v } ) ) = ( ( # ` V ) - 1 ) ) |
21 |
20
|
3ad2antl2 |
|- ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( # ` ( V \ { v } ) ) = ( ( # ` V ) - 1 ) ) |
22 |
19 21
|
sylan9eqr |
|- ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( # ` ( G NeighbVtx v ) ) = ( ( # ` V ) - 1 ) ) |
23 |
18 22
|
eqtr3d |
|- ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) |
24 |
23
|
ex |
|- ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( ( G NeighbVtx v ) = ( V \ { v } ) -> ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) |
25 |
24
|
ralimdva |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( G NeighbVtx v ) = ( V \ { v } ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) |
26 |
14 25
|
mpd |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) |
27 |
|
simp1 |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G e. ComplUSGraph ) |
28 |
|
ovex |
|- ( ( # ` V ) - 1 ) e. _V |
29 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
30 |
1 29
|
isrusgr0 |
|- ( ( G e. ComplUSGraph /\ ( ( # ` V ) - 1 ) e. _V ) -> ( G RegUSGraph ( ( # ` V ) - 1 ) <-> ( G e. USGraph /\ ( ( # ` V ) - 1 ) e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) ) |
31 |
27 28 30
|
sylancl |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> ( G RegUSGraph ( ( # ` V ) - 1 ) <-> ( G e. USGraph /\ ( ( # ` V ) - 1 ) e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) ) |
32 |
3 9 26 31
|
mpbir3and |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G RegUSGraph ( ( # ` V ) - 1 ) ) |