| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cusgrrusgr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | cusgrusgr |  |-  ( G e. ComplUSGraph -> G e. USGraph ) | 
						
							| 3 | 2 | 3ad2ant1 |  |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G e. USGraph ) | 
						
							| 4 |  | hashnncl |  |-  ( V e. Fin -> ( ( # ` V ) e. NN <-> V =/= (/) ) ) | 
						
							| 5 |  | nnm1nn0 |  |-  ( ( # ` V ) e. NN -> ( ( # ` V ) - 1 ) e. NN0 ) | 
						
							| 6 | 5 | nn0xnn0d |  |-  ( ( # ` V ) e. NN -> ( ( # ` V ) - 1 ) e. NN0* ) | 
						
							| 7 | 4 6 | biimtrrdi |  |-  ( V e. Fin -> ( V =/= (/) -> ( ( # ` V ) - 1 ) e. NN0* ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) - 1 ) e. NN0* ) | 
						
							| 9 | 8 | 3adant1 |  |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) - 1 ) e. NN0* ) | 
						
							| 10 |  | cusgrcplgr |  |-  ( G e. ComplUSGraph -> G e. ComplGraph ) | 
						
							| 11 | 10 | 3ad2ant1 |  |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G e. ComplGraph ) | 
						
							| 12 | 1 | nbcplgr |  |-  ( ( G e. ComplGraph /\ v e. V ) -> ( G NeighbVtx v ) = ( V \ { v } ) ) | 
						
							| 13 | 11 12 | sylan |  |-  ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( G NeighbVtx v ) = ( V \ { v } ) ) | 
						
							| 14 | 13 | ralrimiva |  |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> A. v e. V ( G NeighbVtx v ) = ( V \ { v } ) ) | 
						
							| 15 | 3 | anim1i |  |-  ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( G e. USGraph /\ v e. V ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( G e. USGraph /\ v e. V ) ) | 
						
							| 17 | 1 | hashnbusgrvd |  |-  ( ( G e. USGraph /\ v e. V ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) | 
						
							| 19 |  | fveq2 |  |-  ( ( G NeighbVtx v ) = ( V \ { v } ) -> ( # ` ( G NeighbVtx v ) ) = ( # ` ( V \ { v } ) ) ) | 
						
							| 20 |  | hashdifsn |  |-  ( ( V e. Fin /\ v e. V ) -> ( # ` ( V \ { v } ) ) = ( ( # ` V ) - 1 ) ) | 
						
							| 21 | 20 | 3ad2antl2 |  |-  ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( # ` ( V \ { v } ) ) = ( ( # ` V ) - 1 ) ) | 
						
							| 22 | 19 21 | sylan9eqr |  |-  ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( # ` ( G NeighbVtx v ) ) = ( ( # ` V ) - 1 ) ) | 
						
							| 23 | 18 22 | eqtr3d |  |-  ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) | 
						
							| 24 | 23 | ex |  |-  ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( ( G NeighbVtx v ) = ( V \ { v } ) -> ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) | 
						
							| 25 | 24 | ralimdva |  |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( G NeighbVtx v ) = ( V \ { v } ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) | 
						
							| 26 | 14 25 | mpd |  |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) | 
						
							| 27 |  | simp1 |  |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G e. ComplUSGraph ) | 
						
							| 28 |  | ovex |  |-  ( ( # ` V ) - 1 ) e. _V | 
						
							| 29 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 30 | 1 29 | isrusgr0 |  |-  ( ( G e. ComplUSGraph /\ ( ( # ` V ) - 1 ) e. _V ) -> ( G RegUSGraph ( ( # ` V ) - 1 ) <-> ( G e. USGraph /\ ( ( # ` V ) - 1 ) e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) ) | 
						
							| 31 | 27 28 30 | sylancl |  |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> ( G RegUSGraph ( ( # ` V ) - 1 ) <-> ( G e. USGraph /\ ( ( # ` V ) - 1 ) e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) ) | 
						
							| 32 | 3 9 26 31 | mpbir3and |  |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G RegUSGraph ( ( # ` V ) - 1 ) ) |