Metamath Proof Explorer


Theorem cvlsupr8

Description: Consequence of superposition condition ( P .\/ R ) = ( Q .\/ R ) . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses cvlsupr5.a
|- A = ( Atoms ` K )
cvlsupr5.j
|- .\/ = ( join ` K )
Assertion cvlsupr8
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ Q ) = ( P .\/ R ) )

Proof

Step Hyp Ref Expression
1 cvlsupr5.a
 |-  A = ( Atoms ` K )
2 cvlsupr5.j
 |-  .\/ = ( join ` K )
3 cvllat
 |-  ( K e. CvLat -> K e. Lat )
4 3 3ad2ant1
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> K e. Lat )
5 simp22
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> Q e. A )
6 eqid
 |-  ( Base ` K ) = ( Base ` K )
7 6 1 atbase
 |-  ( Q e. A -> Q e. ( Base ` K ) )
8 5 7 syl
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> Q e. ( Base ` K ) )
9 simp23
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R e. A )
10 6 1 atbase
 |-  ( R e. A -> R e. ( Base ` K ) )
11 9 10 syl
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R e. ( Base ` K ) )
12 6 2 latjcom
 |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) = ( R .\/ Q ) )
13 4 8 11 12 syl3anc
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( Q .\/ R ) = ( R .\/ Q ) )
14 simp3r
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ R ) = ( Q .\/ R ) )
15 1 2 cvlsupr7
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ Q ) = ( R .\/ Q ) )
16 13 14 15 3eqtr4rd
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ Q ) = ( P .\/ R ) )