| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvlsupr5.a |
|- A = ( Atoms ` K ) |
| 2 |
|
cvlsupr5.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cvllat |
|- ( K e. CvLat -> K e. Lat ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> K e. Lat ) |
| 5 |
|
simp21 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P e. A ) |
| 6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 7 |
6 1
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 8 |
5 7
|
syl |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P e. ( Base ` K ) ) |
| 9 |
|
simp23 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R e. A ) |
| 10 |
6 1
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 11 |
9 10
|
syl |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R e. ( Base ` K ) ) |
| 12 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 13 |
6 12 2
|
latlej1 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> P ( le ` K ) ( P .\/ R ) ) |
| 14 |
4 8 11 13
|
syl3anc |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P ( le ` K ) ( P .\/ R ) ) |
| 15 |
|
simp3r |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ R ) = ( Q .\/ R ) ) |
| 16 |
14 15
|
breqtrd |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P ( le ` K ) ( Q .\/ R ) ) |
| 17 |
|
simp22 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> Q e. A ) |
| 18 |
6 1
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 19 |
17 18
|
syl |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> Q e. ( Base ` K ) ) |
| 20 |
6 2
|
latjcom |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
| 21 |
4 19 11 20
|
syl3anc |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
| 22 |
16 21
|
breqtrd |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P ( le ` K ) ( R .\/ Q ) ) |
| 23 |
|
simp1 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> K e. CvLat ) |
| 24 |
|
simp3l |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P =/= Q ) |
| 25 |
12 2 1
|
cvlatexchb2 |
|- ( ( K e. CvLat /\ ( P e. A /\ R e. A /\ Q e. A ) /\ P =/= Q ) -> ( P ( le ` K ) ( R .\/ Q ) <-> ( P .\/ Q ) = ( R .\/ Q ) ) ) |
| 26 |
23 5 9 17 24 25
|
syl131anc |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P ( le ` K ) ( R .\/ Q ) <-> ( P .\/ Q ) = ( R .\/ Q ) ) ) |
| 27 |
22 26
|
mpbid |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ Q ) = ( R .\/ Q ) ) |