Metamath Proof Explorer


Theorem cvsunit

Description: Unit group of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)

Ref Expression
Hypotheses cvsdiv.f
|- F = ( Scalar ` W )
cvsdiv.k
|- K = ( Base ` F )
Assertion cvsunit
|- ( W e. CVec -> ( K \ { 0 } ) = ( Unit ` F ) )

Proof

Step Hyp Ref Expression
1 cvsdiv.f
 |-  F = ( Scalar ` W )
2 cvsdiv.k
 |-  K = ( Base ` F )
3 id
 |-  ( W e. CVec -> W e. CVec )
4 3 cvsclm
 |-  ( W e. CVec -> W e. CMod )
5 1 clm0
 |-  ( W e. CMod -> 0 = ( 0g ` F ) )
6 4 5 syl
 |-  ( W e. CVec -> 0 = ( 0g ` F ) )
7 6 sneqd
 |-  ( W e. CVec -> { 0 } = { ( 0g ` F ) } )
8 7 difeq2d
 |-  ( W e. CVec -> ( K \ { 0 } ) = ( K \ { ( 0g ` F ) } ) )
9 3 cvslvec
 |-  ( W e. CVec -> W e. LVec )
10 1 lvecdrng
 |-  ( W e. LVec -> F e. DivRing )
11 eqid
 |-  ( Unit ` F ) = ( Unit ` F )
12 eqid
 |-  ( 0g ` F ) = ( 0g ` F )
13 2 11 12 isdrng
 |-  ( F e. DivRing <-> ( F e. Ring /\ ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) )
14 13 simprbi
 |-  ( F e. DivRing -> ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) )
15 9 10 14 3syl
 |-  ( W e. CVec -> ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) )
16 8 15 eqtr4d
 |-  ( W e. CVec -> ( K \ { 0 } ) = ( Unit ` F ) )