| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvsdiv.f |
|- F = ( Scalar ` W ) |
| 2 |
|
cvsdiv.k |
|- K = ( Base ` F ) |
| 3 |
|
simpl |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> W e. CVec ) |
| 4 |
3
|
cvsclm |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> W e. CMod ) |
| 5 |
1 2
|
clmsubrg |
|- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
| 6 |
4 5
|
syl |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> K e. ( SubRing ` CCfld ) ) |
| 7 |
|
simpr1 |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> A e. K ) |
| 8 |
|
simpr2 |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. K ) |
| 9 |
|
simpr3 |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B =/= 0 ) |
| 10 |
|
eldifsn |
|- ( B e. ( K \ { 0 } ) <-> ( B e. K /\ B =/= 0 ) ) |
| 11 |
8 9 10
|
sylanbrc |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. ( K \ { 0 } ) ) |
| 12 |
1 2
|
cvsunit |
|- ( W e. CVec -> ( K \ { 0 } ) = ( Unit ` F ) ) |
| 13 |
3 12
|
syl |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( K \ { 0 } ) = ( Unit ` F ) ) |
| 14 |
1 2
|
clmsca |
|- ( W e. CMod -> F = ( CCfld |`s K ) ) |
| 15 |
4 14
|
syl |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> F = ( CCfld |`s K ) ) |
| 16 |
15
|
fveq2d |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( Unit ` F ) = ( Unit ` ( CCfld |`s K ) ) ) |
| 17 |
13 16
|
eqtrd |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( K \ { 0 } ) = ( Unit ` ( CCfld |`s K ) ) ) |
| 18 |
11 17
|
eleqtrd |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. ( Unit ` ( CCfld |`s K ) ) ) |
| 19 |
|
eqid |
|- ( CCfld |`s K ) = ( CCfld |`s K ) |
| 20 |
|
cnflddiv |
|- / = ( /r ` CCfld ) |
| 21 |
|
eqid |
|- ( Unit ` ( CCfld |`s K ) ) = ( Unit ` ( CCfld |`s K ) ) |
| 22 |
|
eqid |
|- ( /r ` ( CCfld |`s K ) ) = ( /r ` ( CCfld |`s K ) ) |
| 23 |
19 20 21 22
|
subrgdv |
|- ( ( K e. ( SubRing ` CCfld ) /\ A e. K /\ B e. ( Unit ` ( CCfld |`s K ) ) ) -> ( A / B ) = ( A ( /r ` ( CCfld |`s K ) ) B ) ) |
| 24 |
6 7 18 23
|
syl3anc |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) = ( A ( /r ` ( CCfld |`s K ) ) B ) ) |
| 25 |
15
|
fveq2d |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( /r ` F ) = ( /r ` ( CCfld |`s K ) ) ) |
| 26 |
25
|
oveqd |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A ( /r ` F ) B ) = ( A ( /r ` ( CCfld |`s K ) ) B ) ) |
| 27 |
24 26
|
eqtr4d |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) = ( A ( /r ` F ) B ) ) |