Metamath Proof Explorer


Theorem cvsdiv

Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)

Ref Expression
Hypotheses cvsdiv.f F = Scalar W
cvsdiv.k K = Base F
Assertion cvsdiv W ℂVec A K B K B 0 A B = A / r F B

Proof

Step Hyp Ref Expression
1 cvsdiv.f F = Scalar W
2 cvsdiv.k K = Base F
3 simpl W ℂVec A K B K B 0 W ℂVec
4 3 cvsclm W ℂVec A K B K B 0 W CMod
5 1 2 clmsubrg W CMod K SubRing fld
6 4 5 syl W ℂVec A K B K B 0 K SubRing fld
7 simpr1 W ℂVec A K B K B 0 A K
8 simpr2 W ℂVec A K B K B 0 B K
9 simpr3 W ℂVec A K B K B 0 B 0
10 eldifsn B K 0 B K B 0
11 8 9 10 sylanbrc W ℂVec A K B K B 0 B K 0
12 1 2 cvsunit W ℂVec K 0 = Unit F
13 3 12 syl W ℂVec A K B K B 0 K 0 = Unit F
14 1 2 clmsca W CMod F = fld 𝑠 K
15 4 14 syl W ℂVec A K B K B 0 F = fld 𝑠 K
16 15 fveq2d W ℂVec A K B K B 0 Unit F = Unit fld 𝑠 K
17 13 16 eqtrd W ℂVec A K B K B 0 K 0 = Unit fld 𝑠 K
18 11 17 eleqtrd W ℂVec A K B K B 0 B Unit fld 𝑠 K
19 eqid fld 𝑠 K = fld 𝑠 K
20 cnflddiv ÷ = / r fld
21 eqid Unit fld 𝑠 K = Unit fld 𝑠 K
22 eqid / r fld 𝑠 K = / r fld 𝑠 K
23 19 20 21 22 subrgdv K SubRing fld A K B Unit fld 𝑠 K A B = A / r fld 𝑠 K B
24 6 7 18 23 syl3anc W ℂVec A K B K B 0 A B = A / r fld 𝑠 K B
25 15 fveq2d W ℂVec A K B K B 0 / r F = / r fld 𝑠 K
26 25 oveqd W ℂVec A K B K B 0 A / r F B = A / r fld 𝑠 K B
27 24 26 eqtr4d W ℂVec A K B K B 0 A B = A / r F B