Metamath Proof Explorer


Theorem cvsdiv

Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)

Ref Expression
Hypotheses cvsdiv.f F=ScalarW
cvsdiv.k K=BaseF
Assertion cvsdiv WℂVecAKBKB0AB=A/rFB

Proof

Step Hyp Ref Expression
1 cvsdiv.f F=ScalarW
2 cvsdiv.k K=BaseF
3 simpl WℂVecAKBKB0WℂVec
4 3 cvsclm WℂVecAKBKB0WCMod
5 1 2 clmsubrg WCModKSubRingfld
6 4 5 syl WℂVecAKBKB0KSubRingfld
7 simpr1 WℂVecAKBKB0AK
8 simpr2 WℂVecAKBKB0BK
9 simpr3 WℂVecAKBKB0B0
10 eldifsn BK0BKB0
11 8 9 10 sylanbrc WℂVecAKBKB0BK0
12 1 2 cvsunit WℂVecK0=UnitF
13 3 12 syl WℂVecAKBKB0K0=UnitF
14 1 2 clmsca WCModF=fld𝑠K
15 4 14 syl WℂVecAKBKB0F=fld𝑠K
16 15 fveq2d WℂVecAKBKB0UnitF=Unitfld𝑠K
17 13 16 eqtrd WℂVecAKBKB0K0=Unitfld𝑠K
18 11 17 eleqtrd WℂVecAKBKB0BUnitfld𝑠K
19 eqid fld𝑠K=fld𝑠K
20 cnflddiv ÷=/rfld
21 eqid Unitfld𝑠K=Unitfld𝑠K
22 eqid /rfld𝑠K=/rfld𝑠K
23 19 20 21 22 subrgdv KSubRingfldAKBUnitfld𝑠KAB=A/rfld𝑠KB
24 6 7 18 23 syl3anc WℂVecAKBKB0AB=A/rfld𝑠KB
25 15 fveq2d WℂVecAKBKB0/rF=/rfld𝑠K
26 25 oveqd WℂVecAKBKB0A/rFB=A/rfld𝑠KB
27 24 26 eqtr4d WℂVecAKBKB0AB=A/rFB