Metamath Proof Explorer


Theorem cvsdivcl

Description: The scalar field of a subcomplex vector space is closed under division. (Contributed by Thierry Arnoux, 22-May-2019)

Ref Expression
Hypotheses cvsdiv.f F=ScalarW
cvsdiv.k K=BaseF
Assertion cvsdivcl WℂVecAKBKB0ABK

Proof

Step Hyp Ref Expression
1 cvsdiv.f F=ScalarW
2 cvsdiv.k K=BaseF
3 1 2 cvsdiv WℂVecAKBKB0AB=A/rFB
4 simpl WℂVecAKBKB0WℂVec
5 4 cvslvec WℂVecAKBKB0WLVec
6 1 lvecdrng WLVecFDivRing
7 drngring FDivRingFRing
8 5 6 7 3syl WℂVecAKBKB0FRing
9 simpr1 WℂVecAKBKB0AK
10 simpr2 WℂVecAKBKB0BK
11 simpr3 WℂVecAKBKB0B0
12 eldifsn BK0BKB0
13 10 11 12 sylanbrc WℂVecAKBKB0BK0
14 1 2 cvsunit WℂVecK0=UnitF
15 14 adantr WℂVecAKBKB0K0=UnitF
16 13 15 eleqtrd WℂVecAKBKB0BUnitF
17 eqid UnitF=UnitF
18 eqid /rF=/rF
19 2 17 18 dvrcl FRingAKBUnitFA/rFBK
20 8 9 16 19 syl3anc WℂVecAKBKB0A/rFBK
21 3 20 eqeltrd WℂVecAKBKB0ABK