| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubg.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | cycsubg.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | cycsubg.f |  |-  F = ( x e. ZZ |-> ( x .x. A ) ) | 
						
							| 4 | 2 | subgmulgcl |  |-  ( ( S e. ( SubGrp ` G ) /\ x e. ZZ /\ A e. S ) -> ( x .x. A ) e. S ) | 
						
							| 5 | 4 | 3expa |  |-  ( ( ( S e. ( SubGrp ` G ) /\ x e. ZZ ) /\ A e. S ) -> ( x .x. A ) e. S ) | 
						
							| 6 | 5 | an32s |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. S ) /\ x e. ZZ ) -> ( x .x. A ) e. S ) | 
						
							| 7 | 6 3 | fmptd |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> F : ZZ --> S ) | 
						
							| 8 | 7 | frnd |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> ran F C_ S ) |