| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycsubg.x |
|- X = ( Base ` G ) |
| 2 |
|
cycsubg.t |
|- .x. = ( .g ` G ) |
| 3 |
|
cycsubg.f |
|- F = ( x e. ZZ |-> ( x .x. A ) ) |
| 4 |
2
|
subgmulgcl |
|- ( ( S e. ( SubGrp ` G ) /\ x e. ZZ /\ A e. S ) -> ( x .x. A ) e. S ) |
| 5 |
4
|
3expa |
|- ( ( ( S e. ( SubGrp ` G ) /\ x e. ZZ ) /\ A e. S ) -> ( x .x. A ) e. S ) |
| 6 |
5
|
an32s |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. S ) /\ x e. ZZ ) -> ( x .x. A ) e. S ) |
| 7 |
6 3
|
fmptd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> F : ZZ --> S ) |
| 8 |
7
|
frnd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> ran F C_ S ) |