| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubg.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | cycsubg.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | cycsubg.f |  |-  F = ( x e. ZZ |-> ( x .x. A ) ) | 
						
							| 4 |  | ssintab |  |-  ( ran F C_ |^| { s | ( s e. ( SubGrp ` G ) /\ A e. s ) } <-> A. s ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> ran F C_ s ) ) | 
						
							| 5 | 1 2 3 | cycsubgss |  |-  ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> ran F C_ s ) | 
						
							| 6 | 4 5 | mpgbir |  |-  ran F C_ |^| { s | ( s e. ( SubGrp ` G ) /\ A e. s ) } | 
						
							| 7 |  | df-rab |  |-  { s e. ( SubGrp ` G ) | A e. s } = { s | ( s e. ( SubGrp ` G ) /\ A e. s ) } | 
						
							| 8 | 7 | inteqi |  |-  |^| { s e. ( SubGrp ` G ) | A e. s } = |^| { s | ( s e. ( SubGrp ` G ) /\ A e. s ) } | 
						
							| 9 | 6 8 | sseqtrri |  |-  ran F C_ |^| { s e. ( SubGrp ` G ) | A e. s } | 
						
							| 10 | 9 | a1i |  |-  ( ( G e. Grp /\ A e. X ) -> ran F C_ |^| { s e. ( SubGrp ` G ) | A e. s } ) | 
						
							| 11 | 1 2 3 | cycsubgcl |  |-  ( ( G e. Grp /\ A e. X ) -> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) | 
						
							| 12 |  | eleq2 |  |-  ( s = ran F -> ( A e. s <-> A e. ran F ) ) | 
						
							| 13 | 12 | elrab |  |-  ( ran F e. { s e. ( SubGrp ` G ) | A e. s } <-> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) | 
						
							| 14 | 11 13 | sylibr |  |-  ( ( G e. Grp /\ A e. X ) -> ran F e. { s e. ( SubGrp ` G ) | A e. s } ) | 
						
							| 15 |  | intss1 |  |-  ( ran F e. { s e. ( SubGrp ` G ) | A e. s } -> |^| { s e. ( SubGrp ` G ) | A e. s } C_ ran F ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( G e. Grp /\ A e. X ) -> |^| { s e. ( SubGrp ` G ) | A e. s } C_ ran F ) | 
						
							| 17 | 10 16 | eqssd |  |-  ( ( G e. Grp /\ A e. X ) -> ran F = |^| { s e. ( SubGrp ` G ) | A e. s } ) |