| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubg.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cycsubg.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | cycsubg.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) | 
						
							| 4 |  | ssintab | ⊢ ( ran  𝐹  ⊆  ∩  { 𝑠  ∣  ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑠 ) }  ↔  ∀ 𝑠 ( ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑠 )  →  ran  𝐹  ⊆  𝑠 ) ) | 
						
							| 5 | 1 2 3 | cycsubgss | ⊢ ( ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑠 )  →  ran  𝐹  ⊆  𝑠 ) | 
						
							| 6 | 4 5 | mpgbir | ⊢ ran  𝐹  ⊆  ∩  { 𝑠  ∣  ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑠 ) } | 
						
							| 7 |  | df-rab | ⊢ { 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑠 }  =  { 𝑠  ∣  ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑠 ) } | 
						
							| 8 | 7 | inteqi | ⊢ ∩  { 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑠 }  =  ∩  { 𝑠  ∣  ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑠 ) } | 
						
							| 9 | 6 8 | sseqtrri | ⊢ ran  𝐹  ⊆  ∩  { 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑠 } | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ran  𝐹  ⊆  ∩  { 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑠 } ) | 
						
							| 11 | 1 2 3 | cycsubgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ran  𝐹  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ran  𝐹 ) ) | 
						
							| 12 |  | eleq2 | ⊢ ( 𝑠  =  ran  𝐹  →  ( 𝐴  ∈  𝑠  ↔  𝐴  ∈  ran  𝐹 ) ) | 
						
							| 13 | 12 | elrab | ⊢ ( ran  𝐹  ∈  { 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑠 }  ↔  ( ran  𝐹  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ran  𝐹 ) ) | 
						
							| 14 | 11 13 | sylibr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ran  𝐹  ∈  { 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑠 } ) | 
						
							| 15 |  | intss1 | ⊢ ( ran  𝐹  ∈  { 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑠 }  →  ∩  { 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑠 }  ⊆  ran  𝐹 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ∩  { 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑠 }  ⊆  ran  𝐹 ) | 
						
							| 17 | 10 16 | eqssd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ran  𝐹  =  ∩  { 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑠 } ) |