Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubg.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
cycsubg.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
cycsubg.f |
⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) |
4 |
|
ssintab |
⊢ ( ran 𝐹 ⊆ ∩ { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) } ↔ ∀ 𝑠 ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ran 𝐹 ⊆ 𝑠 ) ) |
5 |
1 2 3
|
cycsubgss |
⊢ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ran 𝐹 ⊆ 𝑠 ) |
6 |
4 5
|
mpgbir |
⊢ ran 𝐹 ⊆ ∩ { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) } |
7 |
|
df-rab |
⊢ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } = { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) } |
8 |
7
|
inteqi |
⊢ ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } = ∩ { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) } |
9 |
6 8
|
sseqtrri |
⊢ ran 𝐹 ⊆ ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } |
10 |
9
|
a1i |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 ⊆ ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ) |
11 |
1 2 3
|
cycsubgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran 𝐹 ) ) |
12 |
|
eleq2 |
⊢ ( 𝑠 = ran 𝐹 → ( 𝐴 ∈ 𝑠 ↔ 𝐴 ∈ ran 𝐹 ) ) |
13 |
12
|
elrab |
⊢ ( ran 𝐹 ∈ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ↔ ( ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran 𝐹 ) ) |
14 |
11 13
|
sylibr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 ∈ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ) |
15 |
|
intss1 |
⊢ ( ran 𝐹 ∈ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } → ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ⊆ ran 𝐹 ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ⊆ ran 𝐹 ) |
17 |
10 16
|
eqssd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 = ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ) |