Metamath Proof Explorer


Theorem cycsubg

Description: The cyclic group generated by A is the smallest subgroup containing A . (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cycsubg.x 𝑋 = ( Base ‘ 𝐺 )
cycsubg.t · = ( .g𝐺 )
cycsubg.f 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) )
Assertion cycsubg ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ran 𝐹 = { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴𝑠 } )

Proof

Step Hyp Ref Expression
1 cycsubg.x 𝑋 = ( Base ‘ 𝐺 )
2 cycsubg.t · = ( .g𝐺 )
3 cycsubg.f 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) )
4 ssintab ( ran 𝐹 { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑠 ) } ↔ ∀ 𝑠 ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑠 ) → ran 𝐹𝑠 ) )
5 1 2 3 cycsubgss ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑠 ) → ran 𝐹𝑠 )
6 4 5 mpgbir ran 𝐹 { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑠 ) }
7 df-rab { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴𝑠 } = { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑠 ) }
8 7 inteqi { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴𝑠 } = { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑠 ) }
9 6 8 sseqtrri ran 𝐹 { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴𝑠 }
10 9 a1i ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ran 𝐹 { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴𝑠 } )
11 1 2 3 cycsubgcl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran 𝐹 ) )
12 eleq2 ( 𝑠 = ran 𝐹 → ( 𝐴𝑠𝐴 ∈ ran 𝐹 ) )
13 12 elrab ( ran 𝐹 ∈ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴𝑠 } ↔ ( ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran 𝐹 ) )
14 11 13 sylibr ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ran 𝐹 ∈ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴𝑠 } )
15 intss1 ( ran 𝐹 ∈ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴𝑠 } → { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴𝑠 } ⊆ ran 𝐹 )
16 14 15 syl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴𝑠 } ⊆ ran 𝐹 )
17 10 16 eqssd ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ran 𝐹 = { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴𝑠 } )