Metamath Proof Explorer


Theorem cycsubgss

Description: The cyclic subgroup generated by an element A is a subset of any subgroup containing A . (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cycsubg.x 𝑋 = ( Base ‘ 𝐺 )
cycsubg.t · = ( .g𝐺 )
cycsubg.f 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) )
Assertion cycsubgss ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑆 ) → ran 𝐹𝑆 )

Proof

Step Hyp Ref Expression
1 cycsubg.x 𝑋 = ( Base ‘ 𝐺 )
2 cycsubg.t · = ( .g𝐺 )
3 cycsubg.f 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) )
4 2 subgmulgcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑆 ) → ( 𝑥 · 𝐴 ) ∈ 𝑆 )
5 4 3expa ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ℤ ) ∧ 𝐴𝑆 ) → ( 𝑥 · 𝐴 ) ∈ 𝑆 )
6 5 an32s ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑆 ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · 𝐴 ) ∈ 𝑆 )
7 6 3 fmptd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑆 ) → 𝐹 : ℤ ⟶ 𝑆 )
8 7 frnd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑆 ) → ran 𝐹𝑆 )