Description: The cyclic subgroup generated by an element A is a subset of any subgroup containing A . (Contributed by Mario Carneiro, 13-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cycsubg.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
cycsubg.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
cycsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | ||
Assertion | cycsubgss | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑆 ) → ran 𝐹 ⊆ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubg.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
2 | cycsubg.t | ⊢ · = ( .g ‘ 𝐺 ) | |
3 | cycsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | |
4 | 2 | subgmulgcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 · 𝐴 ) ∈ 𝑆 ) |
5 | 4 | 3expa | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ℤ ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 · 𝐴 ) ∈ 𝑆 ) |
6 | 5 | an32s | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · 𝐴 ) ∈ 𝑆 ) |
7 | 6 3 | fmptd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑆 ) → 𝐹 : ℤ ⟶ 𝑆 ) |
8 | 7 | frnd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑆 ) → ran 𝐹 ⊆ 𝑆 ) |