Description: The cyclic subgroup generated by an element A is a subset of any subgroup containing A . (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubg.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| cycsubg.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cycsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | ||
| Assertion | cycsubgss | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑆 ) → ran 𝐹 ⊆ 𝑆 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cycsubg.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | cycsubg.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | cycsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | |
| 4 | 2 | subgmulgcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 · 𝐴 ) ∈ 𝑆 ) | 
| 5 | 4 | 3expa | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ℤ ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 · 𝐴 ) ∈ 𝑆 ) | 
| 6 | 5 | an32s | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · 𝐴 ) ∈ 𝑆 ) | 
| 7 | 6 3 | fmptd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑆 ) → 𝐹 : ℤ ⟶ 𝑆 ) | 
| 8 | 7 | frnd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑆 ) → ran 𝐹 ⊆ 𝑆 ) |