Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
7 |
|
dchrisum0f.f |
|- F = ( b e. NN |-> sum_ v e. { q e. NN | q || b } ( X ` ( L ` v ) ) ) |
8 |
|
dchrisum0f.x |
|- ( ph -> X e. D ) |
9 |
|
dchrisum0fmul.a |
|- ( ph -> A e. NN ) |
10 |
|
dchrisum0fmul.b |
|- ( ph -> B e. NN ) |
11 |
|
dchrisum0fmul.m |
|- ( ph -> ( A gcd B ) = 1 ) |
12 |
|
eqid |
|- { q e. NN | q || A } = { q e. NN | q || A } |
13 |
|
eqid |
|- { q e. NN | q || B } = { q e. NN | q || B } |
14 |
|
eqid |
|- { q e. NN | q || ( A x. B ) } = { q e. NN | q || ( A x. B ) } |
15 |
8
|
adantr |
|- ( ( ph /\ j e. { q e. NN | q || A } ) -> X e. D ) |
16 |
|
elrabi |
|- ( j e. { q e. NN | q || A } -> j e. NN ) |
17 |
16
|
nnzd |
|- ( j e. { q e. NN | q || A } -> j e. ZZ ) |
18 |
17
|
adantl |
|- ( ( ph /\ j e. { q e. NN | q || A } ) -> j e. ZZ ) |
19 |
4 1 5 2 15 18
|
dchrzrhcl |
|- ( ( ph /\ j e. { q e. NN | q || A } ) -> ( X ` ( L ` j ) ) e. CC ) |
20 |
8
|
adantr |
|- ( ( ph /\ k e. { q e. NN | q || B } ) -> X e. D ) |
21 |
|
elrabi |
|- ( k e. { q e. NN | q || B } -> k e. NN ) |
22 |
21
|
nnzd |
|- ( k e. { q e. NN | q || B } -> k e. ZZ ) |
23 |
22
|
adantl |
|- ( ( ph /\ k e. { q e. NN | q || B } ) -> k e. ZZ ) |
24 |
4 1 5 2 20 23
|
dchrzrhcl |
|- ( ( ph /\ k e. { q e. NN | q || B } ) -> ( X ` ( L ` k ) ) e. CC ) |
25 |
17 22
|
anim12i |
|- ( ( j e. { q e. NN | q || A } /\ k e. { q e. NN | q || B } ) -> ( j e. ZZ /\ k e. ZZ ) ) |
26 |
8
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ k e. ZZ ) ) -> X e. D ) |
27 |
|
simprl |
|- ( ( ph /\ ( j e. ZZ /\ k e. ZZ ) ) -> j e. ZZ ) |
28 |
|
simprr |
|- ( ( ph /\ ( j e. ZZ /\ k e. ZZ ) ) -> k e. ZZ ) |
29 |
4 1 5 2 26 27 28
|
dchrzrhmul |
|- ( ( ph /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( X ` ( L ` ( j x. k ) ) ) = ( ( X ` ( L ` j ) ) x. ( X ` ( L ` k ) ) ) ) |
30 |
29
|
eqcomd |
|- ( ( ph /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( X ` ( L ` j ) ) x. ( X ` ( L ` k ) ) ) = ( X ` ( L ` ( j x. k ) ) ) ) |
31 |
25 30
|
sylan2 |
|- ( ( ph /\ ( j e. { q e. NN | q || A } /\ k e. { q e. NN | q || B } ) ) -> ( ( X ` ( L ` j ) ) x. ( X ` ( L ` k ) ) ) = ( X ` ( L ` ( j x. k ) ) ) ) |
32 |
|
2fveq3 |
|- ( i = ( j x. k ) -> ( X ` ( L ` i ) ) = ( X ` ( L ` ( j x. k ) ) ) ) |
33 |
9 10 11 12 13 14 19 24 31 32
|
fsumdvdsmul |
|- ( ph -> ( sum_ j e. { q e. NN | q || A } ( X ` ( L ` j ) ) x. sum_ k e. { q e. NN | q || B } ( X ` ( L ` k ) ) ) = sum_ i e. { q e. NN | q || ( A x. B ) } ( X ` ( L ` i ) ) ) |
34 |
1 2 3 4 5 6 7
|
dchrisum0fval |
|- ( A e. NN -> ( F ` A ) = sum_ j e. { q e. NN | q || A } ( X ` ( L ` j ) ) ) |
35 |
9 34
|
syl |
|- ( ph -> ( F ` A ) = sum_ j e. { q e. NN | q || A } ( X ` ( L ` j ) ) ) |
36 |
1 2 3 4 5 6 7
|
dchrisum0fval |
|- ( B e. NN -> ( F ` B ) = sum_ k e. { q e. NN | q || B } ( X ` ( L ` k ) ) ) |
37 |
10 36
|
syl |
|- ( ph -> ( F ` B ) = sum_ k e. { q e. NN | q || B } ( X ` ( L ` k ) ) ) |
38 |
35 37
|
oveq12d |
|- ( ph -> ( ( F ` A ) x. ( F ` B ) ) = ( sum_ j e. { q e. NN | q || A } ( X ` ( L ` j ) ) x. sum_ k e. { q e. NN | q || B } ( X ` ( L ` k ) ) ) ) |
39 |
9 10
|
nnmulcld |
|- ( ph -> ( A x. B ) e. NN ) |
40 |
1 2 3 4 5 6 7
|
dchrisum0fval |
|- ( ( A x. B ) e. NN -> ( F ` ( A x. B ) ) = sum_ i e. { q e. NN | q || ( A x. B ) } ( X ` ( L ` i ) ) ) |
41 |
39 40
|
syl |
|- ( ph -> ( F ` ( A x. B ) ) = sum_ i e. { q e. NN | q || ( A x. B ) } ( X ` ( L ` i ) ) ) |
42 |
33 38 41
|
3eqtr4rd |
|- ( ph -> ( F ` ( A x. B ) ) = ( ( F ` A ) x. ( F ` B ) ) ) |