| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
| 2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
| 3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
| 4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
| 5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
| 6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
| 7 |
|
dchrisum0f.f |
|- F = ( b e. NN |-> sum_ v e. { q e. NN | q || b } ( X ` ( L ` v ) ) ) |
| 8 |
|
dchrisum0f.x |
|- ( ph -> X e. D ) |
| 9 |
|
dchrisum0fmul.a |
|- ( ph -> A e. NN ) |
| 10 |
|
dchrisum0fmul.b |
|- ( ph -> B e. NN ) |
| 11 |
|
dchrisum0fmul.m |
|- ( ph -> ( A gcd B ) = 1 ) |
| 12 |
|
eqid |
|- { q e. NN | q || A } = { q e. NN | q || A } |
| 13 |
|
eqid |
|- { q e. NN | q || B } = { q e. NN | q || B } |
| 14 |
|
eqid |
|- { q e. NN | q || ( A x. B ) } = { q e. NN | q || ( A x. B ) } |
| 15 |
8
|
adantr |
|- ( ( ph /\ j e. { q e. NN | q || A } ) -> X e. D ) |
| 16 |
|
elrabi |
|- ( j e. { q e. NN | q || A } -> j e. NN ) |
| 17 |
16
|
nnzd |
|- ( j e. { q e. NN | q || A } -> j e. ZZ ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ j e. { q e. NN | q || A } ) -> j e. ZZ ) |
| 19 |
4 1 5 2 15 18
|
dchrzrhcl |
|- ( ( ph /\ j e. { q e. NN | q || A } ) -> ( X ` ( L ` j ) ) e. CC ) |
| 20 |
8
|
adantr |
|- ( ( ph /\ k e. { q e. NN | q || B } ) -> X e. D ) |
| 21 |
|
elrabi |
|- ( k e. { q e. NN | q || B } -> k e. NN ) |
| 22 |
21
|
nnzd |
|- ( k e. { q e. NN | q || B } -> k e. ZZ ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ k e. { q e. NN | q || B } ) -> k e. ZZ ) |
| 24 |
4 1 5 2 20 23
|
dchrzrhcl |
|- ( ( ph /\ k e. { q e. NN | q || B } ) -> ( X ` ( L ` k ) ) e. CC ) |
| 25 |
17 22
|
anim12i |
|- ( ( j e. { q e. NN | q || A } /\ k e. { q e. NN | q || B } ) -> ( j e. ZZ /\ k e. ZZ ) ) |
| 26 |
8
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ k e. ZZ ) ) -> X e. D ) |
| 27 |
|
simprl |
|- ( ( ph /\ ( j e. ZZ /\ k e. ZZ ) ) -> j e. ZZ ) |
| 28 |
|
simprr |
|- ( ( ph /\ ( j e. ZZ /\ k e. ZZ ) ) -> k e. ZZ ) |
| 29 |
4 1 5 2 26 27 28
|
dchrzrhmul |
|- ( ( ph /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( X ` ( L ` ( j x. k ) ) ) = ( ( X ` ( L ` j ) ) x. ( X ` ( L ` k ) ) ) ) |
| 30 |
29
|
eqcomd |
|- ( ( ph /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( X ` ( L ` j ) ) x. ( X ` ( L ` k ) ) ) = ( X ` ( L ` ( j x. k ) ) ) ) |
| 31 |
25 30
|
sylan2 |
|- ( ( ph /\ ( j e. { q e. NN | q || A } /\ k e. { q e. NN | q || B } ) ) -> ( ( X ` ( L ` j ) ) x. ( X ` ( L ` k ) ) ) = ( X ` ( L ` ( j x. k ) ) ) ) |
| 32 |
|
2fveq3 |
|- ( i = ( j x. k ) -> ( X ` ( L ` i ) ) = ( X ` ( L ` ( j x. k ) ) ) ) |
| 33 |
9 10 11 12 13 14 19 24 31 32
|
fsumdvdsmul |
|- ( ph -> ( sum_ j e. { q e. NN | q || A } ( X ` ( L ` j ) ) x. sum_ k e. { q e. NN | q || B } ( X ` ( L ` k ) ) ) = sum_ i e. { q e. NN | q || ( A x. B ) } ( X ` ( L ` i ) ) ) |
| 34 |
1 2 3 4 5 6 7
|
dchrisum0fval |
|- ( A e. NN -> ( F ` A ) = sum_ j e. { q e. NN | q || A } ( X ` ( L ` j ) ) ) |
| 35 |
9 34
|
syl |
|- ( ph -> ( F ` A ) = sum_ j e. { q e. NN | q || A } ( X ` ( L ` j ) ) ) |
| 36 |
1 2 3 4 5 6 7
|
dchrisum0fval |
|- ( B e. NN -> ( F ` B ) = sum_ k e. { q e. NN | q || B } ( X ` ( L ` k ) ) ) |
| 37 |
10 36
|
syl |
|- ( ph -> ( F ` B ) = sum_ k e. { q e. NN | q || B } ( X ` ( L ` k ) ) ) |
| 38 |
35 37
|
oveq12d |
|- ( ph -> ( ( F ` A ) x. ( F ` B ) ) = ( sum_ j e. { q e. NN | q || A } ( X ` ( L ` j ) ) x. sum_ k e. { q e. NN | q || B } ( X ` ( L ` k ) ) ) ) |
| 39 |
9 10
|
nnmulcld |
|- ( ph -> ( A x. B ) e. NN ) |
| 40 |
1 2 3 4 5 6 7
|
dchrisum0fval |
|- ( ( A x. B ) e. NN -> ( F ` ( A x. B ) ) = sum_ i e. { q e. NN | q || ( A x. B ) } ( X ` ( L ` i ) ) ) |
| 41 |
39 40
|
syl |
|- ( ph -> ( F ` ( A x. B ) ) = sum_ i e. { q e. NN | q || ( A x. B ) } ( X ` ( L ` i ) ) ) |
| 42 |
33 38 41
|
3eqtr4rd |
|- ( ph -> ( F ` ( A x. B ) ) = ( ( F ` A ) x. ( F ` B ) ) ) |