Metamath Proof Explorer


Theorem dchrisum0fmul

Description: The function F , the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of Shapiro, p. 382. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
rpvmasum2.g 𝐺 = ( DChr ‘ 𝑁 )
rpvmasum2.d 𝐷 = ( Base ‘ 𝐺 )
rpvmasum2.1 1 = ( 0g𝐺 )
dchrisum0f.f 𝐹 = ( 𝑏 ∈ ℕ ↦ Σ 𝑣 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝑏 } ( 𝑋 ‘ ( 𝐿𝑣 ) ) )
dchrisum0f.x ( 𝜑𝑋𝐷 )
dchrisum0fmul.a ( 𝜑𝐴 ∈ ℕ )
dchrisum0fmul.b ( 𝜑𝐵 ∈ ℕ )
dchrisum0fmul.m ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 )
Assertion dchrisum0fmul ( 𝜑 → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐹𝐴 ) · ( 𝐹𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
2 rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
3 rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
4 rpvmasum2.g 𝐺 = ( DChr ‘ 𝑁 )
5 rpvmasum2.d 𝐷 = ( Base ‘ 𝐺 )
6 rpvmasum2.1 1 = ( 0g𝐺 )
7 dchrisum0f.f 𝐹 = ( 𝑏 ∈ ℕ ↦ Σ 𝑣 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝑏 } ( 𝑋 ‘ ( 𝐿𝑣 ) ) )
8 dchrisum0f.x ( 𝜑𝑋𝐷 )
9 dchrisum0fmul.a ( 𝜑𝐴 ∈ ℕ )
10 dchrisum0fmul.b ( 𝜑𝐵 ∈ ℕ )
11 dchrisum0fmul.m ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 )
12 eqid { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } = { 𝑞 ∈ ℕ ∣ 𝑞𝐴 }
13 eqid { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } = { 𝑞 ∈ ℕ ∣ 𝑞𝐵 }
14 eqid { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝐴 · 𝐵 ) } = { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝐴 · 𝐵 ) }
15 8 adantr ( ( 𝜑𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } ) → 𝑋𝐷 )
16 elrabi ( 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } → 𝑗 ∈ ℕ )
17 16 nnzd ( 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } → 𝑗 ∈ ℤ )
18 17 adantl ( ( 𝜑𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } ) → 𝑗 ∈ ℤ )
19 4 1 5 2 15 18 dchrzrhcl ( ( 𝜑𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } ) → ( 𝑋 ‘ ( 𝐿𝑗 ) ) ∈ ℂ )
20 8 adantr ( ( 𝜑𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } ) → 𝑋𝐷 )
21 elrabi ( 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } → 𝑘 ∈ ℕ )
22 21 nnzd ( 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } → 𝑘 ∈ ℤ )
23 22 adantl ( ( 𝜑𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } ) → 𝑘 ∈ ℤ )
24 4 1 5 2 20 23 dchrzrhcl ( ( 𝜑𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } ) → ( 𝑋 ‘ ( 𝐿𝑘 ) ) ∈ ℂ )
25 17 22 anim12i ( ( 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } ∧ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } ) → ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) )
26 8 adantr ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑋𝐷 )
27 simprl ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑗 ∈ ℤ )
28 simprr ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑘 ∈ ℤ )
29 4 1 5 2 26 27 28 dchrzrhmul ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑗 · 𝑘 ) ) ) = ( ( 𝑋 ‘ ( 𝐿𝑗 ) ) · ( 𝑋 ‘ ( 𝐿𝑘 ) ) ) )
30 29 eqcomd ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑋 ‘ ( 𝐿𝑗 ) ) · ( 𝑋 ‘ ( 𝐿𝑘 ) ) ) = ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑗 · 𝑘 ) ) ) )
31 25 30 sylan2 ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } ∧ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } ) ) → ( ( 𝑋 ‘ ( 𝐿𝑗 ) ) · ( 𝑋 ‘ ( 𝐿𝑘 ) ) ) = ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑗 · 𝑘 ) ) ) )
32 2fveq3 ( 𝑖 = ( 𝑗 · 𝑘 ) → ( 𝑋 ‘ ( 𝐿𝑖 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑗 · 𝑘 ) ) ) )
33 9 10 11 12 13 14 19 24 31 32 fsumdvdsmul ( 𝜑 → ( Σ 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } ( 𝑋 ‘ ( 𝐿𝑗 ) ) · Σ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } ( 𝑋 ‘ ( 𝐿𝑘 ) ) ) = Σ 𝑖 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝐴 · 𝐵 ) } ( 𝑋 ‘ ( 𝐿𝑖 ) ) )
34 1 2 3 4 5 6 7 dchrisum0fval ( 𝐴 ∈ ℕ → ( 𝐹𝐴 ) = Σ 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } ( 𝑋 ‘ ( 𝐿𝑗 ) ) )
35 9 34 syl ( 𝜑 → ( 𝐹𝐴 ) = Σ 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } ( 𝑋 ‘ ( 𝐿𝑗 ) ) )
36 1 2 3 4 5 6 7 dchrisum0fval ( 𝐵 ∈ ℕ → ( 𝐹𝐵 ) = Σ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } ( 𝑋 ‘ ( 𝐿𝑘 ) ) )
37 10 36 syl ( 𝜑 → ( 𝐹𝐵 ) = Σ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } ( 𝑋 ‘ ( 𝐿𝑘 ) ) )
38 35 37 oveq12d ( 𝜑 → ( ( 𝐹𝐴 ) · ( 𝐹𝐵 ) ) = ( Σ 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐴 } ( 𝑋 ‘ ( 𝐿𝑗 ) ) · Σ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞𝐵 } ( 𝑋 ‘ ( 𝐿𝑘 ) ) ) )
39 9 10 nnmulcld ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℕ )
40 1 2 3 4 5 6 7 dchrisum0fval ( ( 𝐴 · 𝐵 ) ∈ ℕ → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = Σ 𝑖 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝐴 · 𝐵 ) } ( 𝑋 ‘ ( 𝐿𝑖 ) ) )
41 39 40 syl ( 𝜑 → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = Σ 𝑖 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝐴 · 𝐵 ) } ( 𝑋 ‘ ( 𝐿𝑖 ) ) )
42 33 38 41 3eqtr4rd ( 𝜑 → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐹𝐴 ) · ( 𝐹𝐵 ) ) )