Description: Define the class of finitely generated left modules. Finite generation of subspaces can be interpreted using ` |``s ` . (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lfig | |- LFinGen = { w e. LMod | ( Base ` w ) e. ( ( LSpan ` w ) " ( ~P ( Base ` w ) i^i Fin ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clfig | |- LFinGen |
|
| 1 | vw | |- w |
|
| 2 | clmod | |- LMod |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- w |
| 5 | 4 3 | cfv | |- ( Base ` w ) |
| 6 | clspn | |- LSpan |
|
| 7 | 4 6 | cfv | |- ( LSpan ` w ) |
| 8 | 5 | cpw | |- ~P ( Base ` w ) |
| 9 | cfn | |- Fin |
|
| 10 | 8 9 | cin | |- ( ~P ( Base ` w ) i^i Fin ) |
| 11 | 7 10 | cima | |- ( ( LSpan ` w ) " ( ~P ( Base ` w ) i^i Fin ) ) |
| 12 | 5 11 | wcel | |- ( Base ` w ) e. ( ( LSpan ` w ) " ( ~P ( Base ` w ) i^i Fin ) ) |
| 13 | 12 1 2 | crab | |- { w e. LMod | ( Base ` w ) e. ( ( LSpan ` w ) " ( ~P ( Base ` w ) i^i Fin ) ) } |
| 14 | 0 13 | wceq | |- LFinGen = { w e. LMod | ( Base ` w ) e. ( ( LSpan ` w ) " ( ~P ( Base ` w ) i^i Fin ) ) } |