| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqcom |  |-  ( y = ( F '''' A ) <-> ( F '''' A ) = y ) | 
						
							| 2 |  | dfatbrafv2b |  |-  ( ( F defAt A /\ y e. _V ) -> ( ( F '''' A ) = y <-> A F y ) ) | 
						
							| 3 | 2 | elvd |  |-  ( F defAt A -> ( ( F '''' A ) = y <-> A F y ) ) | 
						
							| 4 | 1 3 | bitrid |  |-  ( F defAt A -> ( y = ( F '''' A ) <-> A F y ) ) | 
						
							| 5 | 4 | abbidv |  |-  ( F defAt A -> { y | y = ( F '''' A ) } = { y | A F y } ) | 
						
							| 6 |  | df-sn |  |-  { ( F '''' A ) } = { y | y = ( F '''' A ) } | 
						
							| 7 | 6 | a1i |  |-  ( F defAt A -> { ( F '''' A ) } = { y | y = ( F '''' A ) } ) | 
						
							| 8 |  | dfdfat2 |  |-  ( F defAt A <-> ( A e. dom F /\ E! x A F x ) ) | 
						
							| 9 |  | imasng |  |-  ( A e. dom F -> ( F " { A } ) = { y | A F y } ) | 
						
							| 10 | 9 | adantr |  |-  ( ( A e. dom F /\ E! x A F x ) -> ( F " { A } ) = { y | A F y } ) | 
						
							| 11 | 8 10 | sylbi |  |-  ( F defAt A -> ( F " { A } ) = { y | A F y } ) | 
						
							| 12 | 5 7 11 | 3eqtr4d |  |-  ( F defAt A -> { ( F '''' A ) } = ( F " { A } ) ) |