| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfatafv2iota |  |-  ( F defAt A -> ( F '''' A ) = ( iota x A F x ) ) | 
						
							| 2 |  | dfdfat2 |  |-  ( F defAt A <-> ( A e. dom F /\ E! x A F x ) ) | 
						
							| 3 | 2 | simplbi |  |-  ( F defAt A -> A e. dom F ) | 
						
							| 4 |  | elimasng |  |-  ( ( A e. dom F /\ x e. _V ) -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( F defAt A /\ x e. _V ) -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) | 
						
							| 6 |  | df-br |  |-  ( A F x <-> <. A , x >. e. F ) | 
						
							| 7 | 5 6 | bitr4di |  |-  ( ( F defAt A /\ x e. _V ) -> ( x e. ( F " { A } ) <-> A F x ) ) | 
						
							| 8 | 7 | elvd |  |-  ( F defAt A -> ( x e. ( F " { A } ) <-> A F x ) ) | 
						
							| 9 | 8 | iotabidv |  |-  ( F defAt A -> ( iota x x e. ( F " { A } ) ) = ( iota x A F x ) ) | 
						
							| 10 | 1 9 | eqtr4d |  |-  ( F defAt A -> ( F '''' A ) = ( iota x x e. ( F " { A } ) ) ) |