Step |
Hyp |
Ref |
Expression |
1 |
|
dfatafv2iota |
|- ( F defAt A -> ( F '''' A ) = ( iota x A F x ) ) |
2 |
|
dfdfat2 |
|- ( F defAt A <-> ( A e. dom F /\ E! x A F x ) ) |
3 |
2
|
simplbi |
|- ( F defAt A -> A e. dom F ) |
4 |
|
elimasng |
|- ( ( A e. dom F /\ x e. _V ) -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) |
5 |
3 4
|
sylan |
|- ( ( F defAt A /\ x e. _V ) -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) |
6 |
|
df-br |
|- ( A F x <-> <. A , x >. e. F ) |
7 |
5 6
|
bitr4di |
|- ( ( F defAt A /\ x e. _V ) -> ( x e. ( F " { A } ) <-> A F x ) ) |
8 |
7
|
elvd |
|- ( F defAt A -> ( x e. ( F " { A } ) <-> A F x ) ) |
9 |
8
|
iotabidv |
|- ( F defAt A -> ( iota x x e. ( F " { A } ) ) = ( iota x A F x ) ) |
10 |
1 9
|
eqtr4d |
|- ( F defAt A -> ( F '''' A ) = ( iota x x e. ( F " { A } ) ) ) |