Step |
Hyp |
Ref |
Expression |
1 |
|
df-fv |
|- ( F ` A ) = ( iota x A F x ) |
2 |
|
elimasng |
|- ( ( A e. _V /\ x e. _V ) -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) |
3 |
|
df-br |
|- ( A F x <-> <. A , x >. e. F ) |
4 |
2 3
|
bitr4di |
|- ( ( A e. _V /\ x e. _V ) -> ( x e. ( F " { A } ) <-> A F x ) ) |
5 |
4
|
elvd |
|- ( A e. _V -> ( x e. ( F " { A } ) <-> A F x ) ) |
6 |
5
|
iotabidv |
|- ( A e. _V -> ( iota x x e. ( F " { A } ) ) = ( iota x A F x ) ) |
7 |
1 6
|
eqtr4id |
|- ( A e. _V -> ( F ` A ) = ( iota x x e. ( F " { A } ) ) ) |
8 |
|
fvprc |
|- ( -. A e. _V -> ( F ` A ) = (/) ) |
9 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
10 |
9
|
biimpi |
|- ( -. A e. _V -> { A } = (/) ) |
11 |
10
|
imaeq2d |
|- ( -. A e. _V -> ( F " { A } ) = ( F " (/) ) ) |
12 |
|
ima0 |
|- ( F " (/) ) = (/) |
13 |
11 12
|
eqtrdi |
|- ( -. A e. _V -> ( F " { A } ) = (/) ) |
14 |
13
|
eleq2d |
|- ( -. A e. _V -> ( x e. ( F " { A } ) <-> x e. (/) ) ) |
15 |
14
|
iotabidv |
|- ( -. A e. _V -> ( iota x x e. ( F " { A } ) ) = ( iota x x e. (/) ) ) |
16 |
|
noel |
|- -. x e. (/) |
17 |
16
|
nex |
|- -. E. x x e. (/) |
18 |
|
euex |
|- ( E! x x e. (/) -> E. x x e. (/) ) |
19 |
17 18
|
mto |
|- -. E! x x e. (/) |
20 |
|
iotanul |
|- ( -. E! x x e. (/) -> ( iota x x e. (/) ) = (/) ) |
21 |
19 20
|
ax-mp |
|- ( iota x x e. (/) ) = (/) |
22 |
15 21
|
eqtrdi |
|- ( -. A e. _V -> ( iota x x e. ( F " { A } ) ) = (/) ) |
23 |
8 22
|
eqtr4d |
|- ( -. A e. _V -> ( F ` A ) = ( iota x x e. ( F " { A } ) ) ) |
24 |
7 23
|
pm2.61i |
|- ( F ` A ) = ( iota x x e. ( F " { A } ) ) |