Metamath Proof Explorer


Theorem dfafv23

Description: A definition of function value in terms of iota, analogous to dffv3 . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion dfafv23 ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) )

Proof

Step Hyp Ref Expression
1 dfatafv2iota ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) )
2 dfdfat2 ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) )
3 2 simplbi ( 𝐹 defAt 𝐴𝐴 ∈ dom 𝐹 )
4 elimasng ( ( 𝐴 ∈ dom 𝐹𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ ⟨ 𝐴 , 𝑥 ⟩ ∈ 𝐹 ) )
5 3 4 sylan ( ( 𝐹 defAt 𝐴𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ ⟨ 𝐴 , 𝑥 ⟩ ∈ 𝐹 ) )
6 df-br ( 𝐴 𝐹 𝑥 ↔ ⟨ 𝐴 , 𝑥 ⟩ ∈ 𝐹 )
7 5 6 bitr4di ( ( 𝐹 defAt 𝐴𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝐴 𝐹 𝑥 ) )
8 7 elvd ( 𝐹 defAt 𝐴 → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝐴 𝐹 𝑥 ) )
9 8 iotabidv ( 𝐹 defAt 𝐴 → ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) )
10 1 9 eqtr4d ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) )