Step |
Hyp |
Ref |
Expression |
1 |
|
dfatafv2iota |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) |
2 |
|
dfdfat2 |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) |
3 |
2
|
simplbi |
⊢ ( 𝐹 defAt 𝐴 → 𝐴 ∈ dom 𝐹 ) |
4 |
|
elimasng |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) ) |
6 |
|
df-br |
⊢ ( 𝐴 𝐹 𝑥 ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) |
7 |
5 6
|
bitr4di |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝐴 𝐹 𝑥 ) ) |
8 |
7
|
elvd |
⊢ ( 𝐹 defAt 𝐴 → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝐴 𝐹 𝑥 ) ) |
9 |
8
|
iotabidv |
⊢ ( 𝐹 defAt 𝐴 → ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) |
10 |
1 9
|
eqtr4d |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) ) |