| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfatafv2iota | ⊢ ( 𝐹  defAt  𝐴  →  ( 𝐹 '''' 𝐴 )  =  ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 2 |  | dfdfat2 | ⊢ ( 𝐹  defAt  𝐴  ↔  ( 𝐴  ∈  dom  𝐹  ∧  ∃! 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 3 | 2 | simplbi | ⊢ ( 𝐹  defAt  𝐴  →  𝐴  ∈  dom  𝐹 ) | 
						
							| 4 |  | elimasng | ⊢ ( ( 𝐴  ∈  dom  𝐹  ∧  𝑥  ∈  V )  →  ( 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  ↔  〈 𝐴 ,  𝑥 〉  ∈  𝐹 ) ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝑥  ∈  V )  →  ( 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  ↔  〈 𝐴 ,  𝑥 〉  ∈  𝐹 ) ) | 
						
							| 6 |  | df-br | ⊢ ( 𝐴 𝐹 𝑥  ↔  〈 𝐴 ,  𝑥 〉  ∈  𝐹 ) | 
						
							| 7 | 5 6 | bitr4di | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝑥  ∈  V )  →  ( 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  ↔  𝐴 𝐹 𝑥 ) ) | 
						
							| 8 | 7 | elvd | ⊢ ( 𝐹  defAt  𝐴  →  ( 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  ↔  𝐴 𝐹 𝑥 ) ) | 
						
							| 9 | 8 | iotabidv | ⊢ ( 𝐹  defAt  𝐴  →  ( ℩ 𝑥 𝑥  ∈  ( 𝐹  “  { 𝐴 } ) )  =  ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 10 | 1 9 | eqtr4d | ⊢ ( 𝐹  defAt  𝐴  →  ( 𝐹 '''' 𝐴 )  =  ( ℩ 𝑥 𝑥  ∈  ( 𝐹  “  { 𝐴 } ) ) ) |