| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chss |  |-  ( x e. CH -> x C_ ~H ) | 
						
							| 2 |  | ococ |  |-  ( x e. CH -> ( _|_ ` ( _|_ ` x ) ) = x ) | 
						
							| 3 | 1 2 | jca |  |-  ( x e. CH -> ( x C_ ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) ) | 
						
							| 4 |  | occl |  |-  ( x C_ ~H -> ( _|_ ` x ) e. CH ) | 
						
							| 5 |  | chss |  |-  ( ( _|_ ` x ) e. CH -> ( _|_ ` x ) C_ ~H ) | 
						
							| 6 |  | occl |  |-  ( ( _|_ ` x ) C_ ~H -> ( _|_ ` ( _|_ ` x ) ) e. CH ) | 
						
							| 7 | 4 5 6 | 3syl |  |-  ( x C_ ~H -> ( _|_ ` ( _|_ ` x ) ) e. CH ) | 
						
							| 8 |  | eleq1 |  |-  ( ( _|_ ` ( _|_ ` x ) ) = x -> ( ( _|_ ` ( _|_ ` x ) ) e. CH <-> x e. CH ) ) | 
						
							| 9 | 7 8 | imbitrid |  |-  ( ( _|_ ` ( _|_ ` x ) ) = x -> ( x C_ ~H -> x e. CH ) ) | 
						
							| 10 | 9 | impcom |  |-  ( ( x C_ ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) -> x e. CH ) | 
						
							| 11 | 3 10 | impbii |  |-  ( x e. CH <-> ( x C_ ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) ) | 
						
							| 12 |  | velpw |  |-  ( x e. ~P ~H <-> x C_ ~H ) | 
						
							| 13 | 12 | anbi1i |  |-  ( ( x e. ~P ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) <-> ( x C_ ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) ) | 
						
							| 14 | 11 13 | bitr4i |  |-  ( x e. CH <-> ( x e. ~P ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) ) | 
						
							| 15 | 14 | eqabi |  |-  CH = { x | ( x e. ~P ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) } | 
						
							| 16 |  | df-rab |  |-  { x e. ~P ~H | ( _|_ ` ( _|_ ` x ) ) = x } = { x | ( x e. ~P ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) } | 
						
							| 17 | 15 16 | eqtr4i |  |-  CH = { x e. ~P ~H | ( _|_ ` ( _|_ ` x ) ) = x } |