Metamath Proof Explorer


Theorem dfch2

Description: Alternate definition of the Hilbert lattice. (Contributed by NM, 8-Aug-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion dfch2 C = { 𝑥 ∈ 𝒫 ℋ ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 }

Proof

Step Hyp Ref Expression
1 chss ( 𝑥C𝑥 ⊆ ℋ )
2 ococ ( 𝑥C → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 )
3 1 2 jca ( 𝑥C → ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) )
4 occl ( 𝑥 ⊆ ℋ → ( ⊥ ‘ 𝑥 ) ∈ C )
5 chss ( ( ⊥ ‘ 𝑥 ) ∈ C → ( ⊥ ‘ 𝑥 ) ⊆ ℋ )
6 occl ( ( ⊥ ‘ 𝑥 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ C )
7 4 5 6 3syl ( 𝑥 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ C )
8 eleq1 ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ C𝑥C ) )
9 7 8 syl5ib ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 → ( 𝑥 ⊆ ℋ → 𝑥C ) )
10 9 impcom ( ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) → 𝑥C )
11 3 10 impbii ( 𝑥C ↔ ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) )
12 velpw ( 𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ )
13 12 anbi1i ( ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ↔ ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) )
14 11 13 bitr4i ( 𝑥C ↔ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) )
15 14 abbi2i C = { 𝑥 ∣ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) }
16 df-rab { 𝑥 ∈ 𝒫 ℋ ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) }
17 15 16 eqtr4i C = { 𝑥 ∈ 𝒫 ℋ ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 }