Step |
Hyp |
Ref |
Expression |
1 |
|
chss |
⊢ ( 𝑥 ∈ Cℋ → 𝑥 ⊆ ℋ ) |
2 |
|
ococ |
⊢ ( 𝑥 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) |
3 |
1 2
|
jca |
⊢ ( 𝑥 ∈ Cℋ → ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
4 |
|
occl |
⊢ ( 𝑥 ⊆ ℋ → ( ⊥ ‘ 𝑥 ) ∈ Cℋ ) |
5 |
|
chss |
⊢ ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ → ( ⊥ ‘ 𝑥 ) ⊆ ℋ ) |
6 |
|
occl |
⊢ ( ( ⊥ ‘ 𝑥 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ Cℋ ) |
7 |
4 5 6
|
3syl |
⊢ ( 𝑥 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ Cℋ ) |
8 |
|
eleq1 |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ Cℋ ↔ 𝑥 ∈ Cℋ ) ) |
9 |
7 8
|
syl5ib |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 → ( 𝑥 ⊆ ℋ → 𝑥 ∈ Cℋ ) ) |
10 |
9
|
impcom |
⊢ ( ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) → 𝑥 ∈ Cℋ ) |
11 |
3 10
|
impbii |
⊢ ( 𝑥 ∈ Cℋ ↔ ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
12 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ ) |
13 |
12
|
anbi1i |
⊢ ( ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ↔ ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
14 |
11 13
|
bitr4i |
⊢ ( 𝑥 ∈ Cℋ ↔ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
15 |
14
|
abbi2i |
⊢ Cℋ = { 𝑥 ∣ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) } |
16 |
|
df-rab |
⊢ { 𝑥 ∈ 𝒫 ℋ ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) } |
17 |
15 16
|
eqtr4i |
⊢ Cℋ = { 𝑥 ∈ 𝒫 ℋ ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } |