| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chss | ⊢ ( 𝑥  ∈   Cℋ   →  𝑥  ⊆   ℋ ) | 
						
							| 2 |  | ococ | ⊢ ( 𝑥  ∈   Cℋ   →  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 3 | 1 2 | jca | ⊢ ( 𝑥  ∈   Cℋ   →  ( 𝑥  ⊆   ℋ  ∧  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥 ) ) | 
						
							| 4 |  | occl | ⊢ ( 𝑥  ⊆   ℋ  →  ( ⊥ ‘ 𝑥 )  ∈   Cℋ  ) | 
						
							| 5 |  | chss | ⊢ ( ( ⊥ ‘ 𝑥 )  ∈   Cℋ   →  ( ⊥ ‘ 𝑥 )  ⊆   ℋ ) | 
						
							| 6 |  | occl | ⊢ ( ( ⊥ ‘ 𝑥 )  ⊆   ℋ  →  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  ∈   Cℋ  ) | 
						
							| 7 | 4 5 6 | 3syl | ⊢ ( 𝑥  ⊆   ℋ  →  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  ∈   Cℋ  ) | 
						
							| 8 |  | eleq1 | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥  →  ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  ∈   Cℋ   ↔  𝑥  ∈   Cℋ  ) ) | 
						
							| 9 | 7 8 | imbitrid | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥  →  ( 𝑥  ⊆   ℋ  →  𝑥  ∈   Cℋ  ) ) | 
						
							| 10 | 9 | impcom | ⊢ ( ( 𝑥  ⊆   ℋ  ∧  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥 )  →  𝑥  ∈   Cℋ  ) | 
						
							| 11 | 3 10 | impbii | ⊢ ( 𝑥  ∈   Cℋ   ↔  ( 𝑥  ⊆   ℋ  ∧  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥 ) ) | 
						
							| 12 |  | velpw | ⊢ ( 𝑥  ∈  𝒫   ℋ  ↔  𝑥  ⊆   ℋ ) | 
						
							| 13 | 12 | anbi1i | ⊢ ( ( 𝑥  ∈  𝒫   ℋ  ∧  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥 )  ↔  ( 𝑥  ⊆   ℋ  ∧  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥 ) ) | 
						
							| 14 | 11 13 | bitr4i | ⊢ ( 𝑥  ∈   Cℋ   ↔  ( 𝑥  ∈  𝒫   ℋ  ∧  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥 ) ) | 
						
							| 15 | 14 | eqabi | ⊢  Cℋ   =  { 𝑥  ∣  ( 𝑥  ∈  𝒫   ℋ  ∧  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥 ) } | 
						
							| 16 |  | df-rab | ⊢ { 𝑥  ∈  𝒫   ℋ  ∣  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝒫   ℋ  ∧  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥 ) } | 
						
							| 17 | 15 16 | eqtr4i | ⊢  Cℋ   =  { 𝑥  ∈  𝒫   ℋ  ∣  ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) )  =  𝑥 } |