Metamath Proof Explorer


Theorem dfch2

Description: Alternate definition of the Hilbert lattice. (Contributed by NM, 8-Aug-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion dfch2 C=x𝒫|x=x

Proof

Step Hyp Ref Expression
1 chss xCx
2 ococ xCx=x
3 1 2 jca xCxx=x
4 occl xxC
5 chss xCx
6 occl xxC
7 4 5 6 3syl xxC
8 eleq1 x=xxCxC
9 7 8 imbitrid x=xxxC
10 9 impcom xx=xxC
11 3 10 impbii xCxx=x
12 velpw x𝒫x
13 12 anbi1i x𝒫x=xxx=x
14 11 13 bitr4i xCx𝒫x=x
15 14 eqabi C=x|x𝒫x=x
16 df-rab x𝒫|x=x=x|x𝒫x=x
17 15 16 eqtr4i C=x𝒫|x=x