Metamath Proof Explorer


Theorem ococin

Description: The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of Beran p. 107. (Contributed by NM, 8-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ococin A A = x C | A x

Proof

Step Hyp Ref Expression
1 helch C
2 1 jctl A C A
3 sseq2 x = A x A
4 3 elrab x C | A x C A
5 2 4 sylibr A x C | A x
6 intss1 x C | A x x C | A x
7 5 6 syl A x C | A x
8 ocss x C | A x x C | A x
9 7 8 syl A x C | A x
10 ocss A A
11 9 10 jca A x C | A x A
12 ssintub A x C | A x
13 occon A x C | A x A x C | A x x C | A x A
14 7 13 mpdan A A x C | A x x C | A x A
15 12 14 mpi A x C | A x A
16 occon x C | A x A x C | A x A A x C | A x
17 11 15 16 sylc A A x C | A x
18 ssrab2 x C | A x C
19 3 rspcev C A x C A x
20 1 19 mpan A x C A x
21 rabn0 x C | A x x C A x
22 20 21 sylibr A x C | A x
23 chintcl x C | A x C x C | A x x C | A x C
24 18 22 23 sylancr A x C | A x C
25 ococ x C | A x C x C | A x = x C | A x
26 24 25 syl A x C | A x = x C | A x
27 17 26 sseqtrd A A x C | A x
28 occl A A C
29 10 28 syl A A C
30 ococss A A A
31 sseq2 x = A A x A A
32 31 elrab A x C | A x A C A A
33 29 30 32 sylanbrc A A x C | A x
34 intss1 A x C | A x x C | A x A
35 33 34 syl A x C | A x A
36 27 35 eqssd A A = x C | A x