| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcnv |
|- Rel `' R |
| 2 |
|
relxp |
|- Rel ( { x } X. ( `' R " { x } ) ) |
| 3 |
2
|
rgenw |
|- A. x e. A Rel ( { x } X. ( `' R " { x } ) ) |
| 4 |
|
reliun |
|- ( Rel U_ x e. A ( { x } X. ( `' R " { x } ) ) <-> A. x e. A Rel ( { x } X. ( `' R " { x } ) ) ) |
| 5 |
3 4
|
mpbir |
|- Rel U_ x e. A ( { x } X. ( `' R " { x } ) ) |
| 6 |
|
vex |
|- z e. _V |
| 7 |
|
vex |
|- y e. _V |
| 8 |
6 7
|
opeldm |
|- ( <. z , y >. e. `' R -> z e. dom `' R ) |
| 9 |
|
df-rn |
|- ran R = dom `' R |
| 10 |
8 9
|
eleqtrrdi |
|- ( <. z , y >. e. `' R -> z e. ran R ) |
| 11 |
|
ssel2 |
|- ( ( ran R C_ A /\ z e. ran R ) -> z e. A ) |
| 12 |
10 11
|
sylan2 |
|- ( ( ran R C_ A /\ <. z , y >. e. `' R ) -> z e. A ) |
| 13 |
12
|
ex |
|- ( ran R C_ A -> ( <. z , y >. e. `' R -> z e. A ) ) |
| 14 |
13
|
pm4.71rd |
|- ( ran R C_ A -> ( <. z , y >. e. `' R <-> ( z e. A /\ <. z , y >. e. `' R ) ) ) |
| 15 |
6 7
|
elimasn |
|- ( y e. ( `' R " { z } ) <-> <. z , y >. e. `' R ) |
| 16 |
15
|
anbi2i |
|- ( ( z e. A /\ y e. ( `' R " { z } ) ) <-> ( z e. A /\ <. z , y >. e. `' R ) ) |
| 17 |
14 16
|
bitr4di |
|- ( ran R C_ A -> ( <. z , y >. e. `' R <-> ( z e. A /\ y e. ( `' R " { z } ) ) ) ) |
| 18 |
|
sneq |
|- ( x = z -> { x } = { z } ) |
| 19 |
18
|
imaeq2d |
|- ( x = z -> ( `' R " { x } ) = ( `' R " { z } ) ) |
| 20 |
19
|
opeliunxp2 |
|- ( <. z , y >. e. U_ x e. A ( { x } X. ( `' R " { x } ) ) <-> ( z e. A /\ y e. ( `' R " { z } ) ) ) |
| 21 |
17 20
|
bitr4di |
|- ( ran R C_ A -> ( <. z , y >. e. `' R <-> <. z , y >. e. U_ x e. A ( { x } X. ( `' R " { x } ) ) ) ) |
| 22 |
1 5 21
|
eqrelrdv |
|- ( ran R C_ A -> `' R = U_ x e. A ( { x } X. ( `' R " { x } ) ) ) |