Metamath Proof Explorer


Theorem dfon2lem2

Description: Lemma for dfon2 . (Contributed by Scott Fenton, 28-Feb-2011)

Ref Expression
Assertion dfon2lem2
|- U. { x | ( x C_ A /\ ph /\ ps ) } C_ A

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( x C_ A /\ ph /\ ps ) -> x C_ A )
2 1 ss2abi
 |-  { x | ( x C_ A /\ ph /\ ps ) } C_ { x | x C_ A }
3 df-pw
 |-  ~P A = { x | x C_ A }
4 2 3 sseqtrri
 |-  { x | ( x C_ A /\ ph /\ ps ) } C_ ~P A
5 sspwuni
 |-  ( { x | ( x C_ A /\ ph /\ ps ) } C_ ~P A <-> U. { x | ( x C_ A /\ ph /\ ps ) } C_ A )
6 4 5 mpbi
 |-  U. { x | ( x C_ A /\ ph /\ ps ) } C_ A