Description: Lemma for dfon2 . (Contributed by Scott Fenton, 28-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon2lem2 | |- U. { x | ( x C_ A /\ ph /\ ps ) } C_ A | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 | |- ( ( x C_ A /\ ph /\ ps ) -> x C_ A ) | |
| 2 | 1 | ss2abi |  |-  { x | ( x C_ A /\ ph /\ ps ) } C_ { x | x C_ A } | 
| 3 | df-pw |  |-  ~P A = { x | x C_ A } | |
| 4 | 2 3 | sseqtrri |  |-  { x | ( x C_ A /\ ph /\ ps ) } C_ ~P A | 
| 5 | sspwuni |  |-  ( { x | ( x C_ A /\ ph /\ ps ) } C_ ~P A <-> U. { x | ( x C_ A /\ ph /\ ps ) } C_ A ) | |
| 6 | 4 5 | mpbi |  |-  U. { x | ( x C_ A /\ ph /\ ps ) } C_ A |