Description: Lemma for dfon2 . (Contributed by Scott Fenton, 28-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dfon2lem2 | |- U. { x | ( x C_ A /\ ph /\ ps ) } C_ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |- ( ( x C_ A /\ ph /\ ps ) -> x C_ A ) |
|
2 | 1 | ss2abi | |- { x | ( x C_ A /\ ph /\ ps ) } C_ { x | x C_ A } |
3 | df-pw | |- ~P A = { x | x C_ A } |
|
4 | 2 3 | sseqtrri | |- { x | ( x C_ A /\ ph /\ ps ) } C_ ~P A |
5 | sspwuni | |- ( { x | ( x C_ A /\ ph /\ ps ) } C_ ~P A <-> U. { x | ( x C_ A /\ ph /\ ps ) } C_ A ) |
|
6 | 4 5 | mpbi | |- U. { x | ( x C_ A /\ ph /\ ps ) } C_ A |