Metamath Proof Explorer


Theorem dfon2lem2

Description: Lemma for dfon2 . (Contributed by Scott Fenton, 28-Feb-2011)

Ref Expression
Assertion dfon2lem2 x | x A φ ψ A

Proof

Step Hyp Ref Expression
1 simp1 x A φ ψ x A
2 1 ss2abi x | x A φ ψ x | x A
3 df-pw 𝒫 A = x | x A
4 2 3 sseqtrri x | x A φ ψ 𝒫 A
5 sspwuni x | x A φ ψ 𝒫 A x | x A φ ψ A
6 4 5 mpbi x | x A φ ψ A