Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Ordinal numbers
dfon2lem2
Next ⟩
dfon2lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfon2lem2
Description:
Lemma for
dfon2
.
(Contributed by
Scott Fenton
, 28-Feb-2011)
Ref
Expression
Assertion
dfon2lem2
⊢
⋃
x
|
x
⊆
A
∧
φ
∧
ψ
⊆
A
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢
x
⊆
A
∧
φ
∧
ψ
→
x
⊆
A
2
1
ss2abi
⊢
x
|
x
⊆
A
∧
φ
∧
ψ
⊆
x
|
x
⊆
A
3
df-pw
⊢
𝒫
A
=
x
|
x
⊆
A
4
2
3
sseqtrri
⊢
x
|
x
⊆
A
∧
φ
∧
ψ
⊆
𝒫
A
5
sspwuni
⊢
x
|
x
⊆
A
∧
φ
∧
ψ
⊆
𝒫
A
↔
⋃
x
|
x
⊆
A
∧
φ
∧
ψ
⊆
A
6
4
5
mpbi
⊢
⋃
x
|
x
⊆
A
∧
φ
∧
ψ
⊆
A