Metamath Proof Explorer


Theorem dfon2lem3

Description: Lemma for dfon2 . All sets satisfying the new definition are transitive and untangled. (Contributed by Scott Fenton, 25-Feb-2011)

Ref Expression
Assertion dfon2lem3 A V x x A Tr x x A Tr A z A ¬ z z

Proof

Step Hyp Ref Expression
1 untelirr z w | w A Tr w t w ¬ t t ¬ z z ¬ w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
2 eluni2 z w | w A Tr w t w ¬ t t x w | w A Tr w t w ¬ t t z x
3 vex x V
4 sseq1 w = x w A x A
5 treq w = x Tr w Tr x
6 raleq w = x t w ¬ t t t x ¬ t t
7 4 5 6 3anbi123d w = x w A Tr w t w ¬ t t x A Tr x t x ¬ t t
8 3 7 elab x w | w A Tr w t w ¬ t t x A Tr x t x ¬ t t
9 elequ1 t = z t t z t
10 elequ2 t = z z t z z
11 9 10 bitrd t = z t t z z
12 11 notbid t = z ¬ t t ¬ z z
13 12 cbvralvw t x ¬ t t z x ¬ z z
14 13 biimpi t x ¬ t t z x ¬ z z
15 14 3ad2ant3 x A Tr x t x ¬ t t z x ¬ z z
16 8 15 sylbi x w | w A Tr w t w ¬ t t z x ¬ z z
17 rsp z x ¬ z z z x ¬ z z
18 16 17 syl x w | w A Tr w t w ¬ t t z x ¬ z z
19 18 rexlimiv x w | w A Tr w t w ¬ t t z x ¬ z z
20 2 19 sylbi z w | w A Tr w t w ¬ t t ¬ z z
21 1 20 mprg ¬ w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
22 dfon2lem2 w | w A Tr w t w ¬ t t A
23 dfpss2 w | w A Tr w t w ¬ t t A w | w A Tr w t w ¬ t t A ¬ w | w A Tr w t w ¬ t t = A
24 dfon2lem1 Tr w | w A Tr w t w ¬ t t
25 ssexg w | w A Tr w t w ¬ t t A A V w | w A Tr w t w ¬ t t V
26 22 25 mpan A V w | w A Tr w t w ¬ t t V
27 psseq1 x = w | w A Tr w t w ¬ t t x A w | w A Tr w t w ¬ t t A
28 treq x = w | w A Tr w t w ¬ t t Tr x Tr w | w A Tr w t w ¬ t t
29 27 28 anbi12d x = w | w A Tr w t w ¬ t t x A Tr x w | w A Tr w t w ¬ t t A Tr w | w A Tr w t w ¬ t t
30 eleq1 x = w | w A Tr w t w ¬ t t x A w | w A Tr w t w ¬ t t A
31 29 30 imbi12d x = w | w A Tr w t w ¬ t t x A Tr x x A w | w A Tr w t w ¬ t t A Tr w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t A
32 31 spcgv w | w A Tr w t w ¬ t t V x x A Tr x x A w | w A Tr w t w ¬ t t A Tr w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t A
33 32 imp w | w A Tr w t w ¬ t t V x x A Tr x x A w | w A Tr w t w ¬ t t A Tr w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t A
34 26 33 sylan A V x x A Tr x x A w | w A Tr w t w ¬ t t A Tr w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t A
35 snssi w | w A Tr w t w ¬ t t A w | w A Tr w t w ¬ t t A
36 unss w | w A Tr w t w ¬ t t A w | w A Tr w t w ¬ t t A w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t A
37 df-suc suc w | w A Tr w t w ¬ t t = w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
38 37 sseq1i suc w | w A Tr w t w ¬ t t A w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t A
39 36 38 sylbb2 w | w A Tr w t w ¬ t t A w | w A Tr w t w ¬ t t A suc w | w A Tr w t w ¬ t t A
40 22 35 39 sylancr w | w A Tr w t w ¬ t t A suc w | w A Tr w t w ¬ t t A
41 suctr Tr w | w A Tr w t w ¬ t t Tr suc w | w A Tr w t w ¬ t t
42 24 41 ax-mp Tr suc w | w A Tr w t w ¬ t t
43 untuni z w | w A Tr w t w ¬ t t ¬ z z x w | w A Tr w t w ¬ t t z x ¬ z z
44 43 16 mprgbir z w | w A Tr w t w ¬ t t ¬ z z
45 nfv t w A
46 nfv t Tr w
47 nfra1 t t w ¬ t t
48 45 46 47 nf3an t w A Tr w t w ¬ t t
49 48 nfab _ t w | w A Tr w t w ¬ t t
50 49 nfuni _ t w | w A Tr w t w ¬ t t
51 50 untsucf z w | w A Tr w t w ¬ t t ¬ z z t suc w | w A Tr w t w ¬ t t ¬ t t
52 44 51 ax-mp t suc w | w A Tr w t w ¬ t t ¬ t t
53 sseq1 z = suc w | w A Tr w t w ¬ t t z A suc w | w A Tr w t w ¬ t t A
54 treq z = suc w | w A Tr w t w ¬ t t Tr z Tr suc w | w A Tr w t w ¬ t t
55 nfcv _ t z
56 50 nfsuc _ t suc w | w A Tr w t w ¬ t t
57 55 56 raleqf z = suc w | w A Tr w t w ¬ t t t z ¬ t t t suc w | w A Tr w t w ¬ t t ¬ t t
58 53 54 57 3anbi123d z = suc w | w A Tr w t w ¬ t t z A Tr z t z ¬ t t suc w | w A Tr w t w ¬ t t A Tr suc w | w A Tr w t w ¬ t t t suc w | w A Tr w t w ¬ t t ¬ t t
59 sseq1 w = z w A z A
60 treq w = z Tr w Tr z
61 raleq w = z t w ¬ t t t z ¬ t t
62 59 60 61 3anbi123d w = z w A Tr w t w ¬ t t z A Tr z t z ¬ t t
63 62 cbvabv w | w A Tr w t w ¬ t t = z | z A Tr z t z ¬ t t
64 58 63 elab2g suc w | w A Tr w t w ¬ t t V suc w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t suc w | w A Tr w t w ¬ t t A Tr suc w | w A Tr w t w ¬ t t t suc w | w A Tr w t w ¬ t t ¬ t t
65 64 biimprd suc w | w A Tr w t w ¬ t t V suc w | w A Tr w t w ¬ t t A Tr suc w | w A Tr w t w ¬ t t t suc w | w A Tr w t w ¬ t t ¬ t t suc w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
66 sucexg w | w A Tr w t w ¬ t t A suc w | w A Tr w t w ¬ t t V
67 65 66 syl11 suc w | w A Tr w t w ¬ t t A Tr suc w | w A Tr w t w ¬ t t t suc w | w A Tr w t w ¬ t t ¬ t t w | w A Tr w t w ¬ t t A suc w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
68 42 52 67 mp3an23 suc w | w A Tr w t w ¬ t t A w | w A Tr w t w ¬ t t A suc w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
69 68 com12 w | w A Tr w t w ¬ t t A suc w | w A Tr w t w ¬ t t A suc w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
70 elssuni suc w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t suc w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
71 sucssel w | w A Tr w t w ¬ t t A suc w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
72 70 71 syl5 w | w A Tr w t w ¬ t t A suc w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
73 69 72 syld w | w A Tr w t w ¬ t t A suc w | w A Tr w t w ¬ t t A w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
74 40 73 mpd w | w A Tr w t w ¬ t t A w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
75 34 74 syl6 A V x x A Tr x x A w | w A Tr w t w ¬ t t A Tr w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
76 24 75 mpan2i A V x x A Tr x x A w | w A Tr w t w ¬ t t A w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
77 23 76 syl5bir A V x x A Tr x x A w | w A Tr w t w ¬ t t A ¬ w | w A Tr w t w ¬ t t = A w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
78 22 77 mpani A V x x A Tr x x A ¬ w | w A Tr w t w ¬ t t = A w | w A Tr w t w ¬ t t w | w A Tr w t w ¬ t t
79 21 78 mt3i A V x x A Tr x x A w | w A Tr w t w ¬ t t = A
80 24 44 pm3.2i Tr w | w A Tr w t w ¬ t t z w | w A Tr w t w ¬ t t ¬ z z
81 treq w | w A Tr w t w ¬ t t = A Tr w | w A Tr w t w ¬ t t Tr A
82 raleq w | w A Tr w t w ¬ t t = A z w | w A Tr w t w ¬ t t ¬ z z z A ¬ z z
83 81 82 anbi12d w | w A Tr w t w ¬ t t = A Tr w | w A Tr w t w ¬ t t z w | w A Tr w t w ¬ t t ¬ z z Tr A z A ¬ z z
84 80 83 mpbii w | w A Tr w t w ¬ t t = A Tr A z A ¬ z z
85 79 84 syl A V x x A Tr x x A Tr A z A ¬ z z
86 85 ex A V x x A Tr x x A Tr A z A ¬ z z