Metamath Proof Explorer


Theorem dfon2lem1

Description: Lemma for dfon2 . (Contributed by Scott Fenton, 28-Feb-2011)

Ref Expression
Assertion dfon2lem1 Tr x | φ Tr x ψ

Proof

Step Hyp Ref Expression
1 truni y x | φ Tr x ψ Tr y Tr x | φ Tr x ψ
2 nfsbc1v x [˙y / x]˙ φ
3 nfv x Tr y
4 nfsbc1v x [˙y / x]˙ ψ
5 2 3 4 nf3an x [˙y / x]˙ φ Tr y [˙y / x]˙ ψ
6 vex y V
7 sbceq1a x = y φ [˙y / x]˙ φ
8 treq x = y Tr x Tr y
9 sbceq1a x = y ψ [˙y / x]˙ ψ
10 7 8 9 3anbi123d x = y φ Tr x ψ [˙y / x]˙ φ Tr y [˙y / x]˙ ψ
11 5 6 10 elabf y x | φ Tr x ψ [˙y / x]˙ φ Tr y [˙y / x]˙ ψ
12 11 simp2bi y x | φ Tr x ψ Tr y
13 1 12 mprg Tr x | φ Tr x ψ