Metamath Proof Explorer


Theorem dfon2lem1

Description: Lemma for dfon2 . (Contributed by Scott Fenton, 28-Feb-2011)

Ref Expression
Assertion dfon2lem1 Trx|φTrxψ

Proof

Step Hyp Ref Expression
1 truni yx|φTrxψTryTrx|φTrxψ
2 nfsbc1v x[˙y/x]˙φ
3 nfv xTry
4 nfsbc1v x[˙y/x]˙ψ
5 2 3 4 nf3an x[˙y/x]˙φTry[˙y/x]˙ψ
6 vex yV
7 sbceq1a x=yφ[˙y/x]˙φ
8 treq x=yTrxTry
9 sbceq1a x=yψ[˙y/x]˙ψ
10 7 8 9 3anbi123d x=yφTrxψ[˙y/x]˙φTry[˙y/x]˙ψ
11 5 6 10 elabf yx|φTrxψ[˙y/x]˙φTry[˙y/x]˙ψ
12 11 simp2bi yx|φTrxψTry
13 1 12 mprg Trx|φTrxψ