Step |
Hyp |
Ref |
Expression |
1 |
|
truni |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } Tr 𝑦 → Tr ∪ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } ) |
2 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
3 |
|
nfv |
⊢ Ⅎ 𝑥 Tr 𝑦 |
4 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜓 |
5 |
2 3 4
|
nf3an |
⊢ Ⅎ 𝑥 ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) |
6 |
|
vex |
⊢ 𝑦 ∈ V |
7 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
8 |
|
treq |
⊢ ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) ) |
9 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
10 |
7 8 9
|
3anbi123d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
11 |
5 6 10
|
elabf |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
12 |
11
|
simp2bi |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } → Tr 𝑦 ) |
13 |
1 12
|
mprg |
⊢ Tr ∪ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } |