| Step | Hyp | Ref | Expression | 
						
							| 1 |  | truni | ⊢ ( ∀ 𝑦  ∈  { 𝑥  ∣  ( 𝜑  ∧  Tr  𝑥  ∧  𝜓 ) } Tr  𝑦  →  Tr  ∪  { 𝑥  ∣  ( 𝜑  ∧  Tr  𝑥  ∧  𝜓 ) } ) | 
						
							| 2 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦  /  𝑥 ] 𝜑 | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑥 Tr  𝑦 | 
						
							| 4 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦  /  𝑥 ] 𝜓 | 
						
							| 5 | 2 3 4 | nf3an | ⊢ Ⅎ 𝑥 ( [ 𝑦  /  𝑥 ] 𝜑  ∧  Tr  𝑦  ∧  [ 𝑦  /  𝑥 ] 𝜓 ) | 
						
							| 6 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 7 |  | sbceq1a | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 8 |  | treq | ⊢ ( 𝑥  =  𝑦  →  ( Tr  𝑥  ↔  Tr  𝑦 ) ) | 
						
							| 9 |  | sbceq1a | ⊢ ( 𝑥  =  𝑦  →  ( 𝜓  ↔  [ 𝑦  /  𝑥 ] 𝜓 ) ) | 
						
							| 10 | 7 8 9 | 3anbi123d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  Tr  𝑥  ∧  𝜓 )  ↔  ( [ 𝑦  /  𝑥 ] 𝜑  ∧  Tr  𝑦  ∧  [ 𝑦  /  𝑥 ] 𝜓 ) ) ) | 
						
							| 11 | 5 6 10 | elabf | ⊢ ( 𝑦  ∈  { 𝑥  ∣  ( 𝜑  ∧  Tr  𝑥  ∧  𝜓 ) }  ↔  ( [ 𝑦  /  𝑥 ] 𝜑  ∧  Tr  𝑦  ∧  [ 𝑦  /  𝑥 ] 𝜓 ) ) | 
						
							| 12 | 11 | simp2bi | ⊢ ( 𝑦  ∈  { 𝑥  ∣  ( 𝜑  ∧  Tr  𝑥  ∧  𝜓 ) }  →  Tr  𝑦 ) | 
						
							| 13 | 1 12 | mprg | ⊢ Tr  ∪  { 𝑥  ∣  ( 𝜑  ∧  Tr  𝑥  ∧  𝜓 ) } |