Metamath Proof Explorer


Theorem dfon2lem1

Description: Lemma for dfon2 . (Contributed by Scott Fenton, 28-Feb-2011)

Ref Expression
Assertion dfon2lem1 Tr { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥𝜓 ) }

Proof

Step Hyp Ref Expression
1 truni ( ∀ 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥𝜓 ) } Tr 𝑦 → Tr { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥𝜓 ) } )
2 nfsbc1v 𝑥 [ 𝑦 / 𝑥 ] 𝜑
3 nfv 𝑥 Tr 𝑦
4 nfsbc1v 𝑥 [ 𝑦 / 𝑥 ] 𝜓
5 2 3 4 nf3an 𝑥 ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦[ 𝑦 / 𝑥 ] 𝜓 )
6 vex 𝑦 ∈ V
7 sbceq1a ( 𝑥 = 𝑦 → ( 𝜑[ 𝑦 / 𝑥 ] 𝜑 ) )
8 treq ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) )
9 sbceq1a ( 𝑥 = 𝑦 → ( 𝜓[ 𝑦 / 𝑥 ] 𝜓 ) )
10 7 8 9 3anbi123d ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ Tr 𝑥𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦[ 𝑦 / 𝑥 ] 𝜓 ) ) )
11 5 6 10 elabf ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥𝜓 ) } ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦[ 𝑦 / 𝑥 ] 𝜓 ) )
12 11 simp2bi ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥𝜓 ) } → Tr 𝑦 )
13 1 12 mprg Tr { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥𝜓 ) }