| Step | Hyp | Ref | Expression | 
						
							| 1 |  | truni |  |-  ( A. y e. { x | ( ph /\ Tr x /\ ps ) } Tr y -> Tr U. { x | ( ph /\ Tr x /\ ps ) } ) | 
						
							| 2 |  | nfsbc1v |  |-  F/ x [. y / x ]. ph | 
						
							| 3 |  | nfv |  |-  F/ x Tr y | 
						
							| 4 |  | nfsbc1v |  |-  F/ x [. y / x ]. ps | 
						
							| 5 | 2 3 4 | nf3an |  |-  F/ x ( [. y / x ]. ph /\ Tr y /\ [. y / x ]. ps ) | 
						
							| 6 |  | vex |  |-  y e. _V | 
						
							| 7 |  | sbceq1a |  |-  ( x = y -> ( ph <-> [. y / x ]. ph ) ) | 
						
							| 8 |  | treq |  |-  ( x = y -> ( Tr x <-> Tr y ) ) | 
						
							| 9 |  | sbceq1a |  |-  ( x = y -> ( ps <-> [. y / x ]. ps ) ) | 
						
							| 10 | 7 8 9 | 3anbi123d |  |-  ( x = y -> ( ( ph /\ Tr x /\ ps ) <-> ( [. y / x ]. ph /\ Tr y /\ [. y / x ]. ps ) ) ) | 
						
							| 11 | 5 6 10 | elabf |  |-  ( y e. { x | ( ph /\ Tr x /\ ps ) } <-> ( [. y / x ]. ph /\ Tr y /\ [. y / x ]. ps ) ) | 
						
							| 12 | 11 | simp2bi |  |-  ( y e. { x | ( ph /\ Tr x /\ ps ) } -> Tr y ) | 
						
							| 13 | 1 12 | mprg |  |-  Tr U. { x | ( ph /\ Tr x /\ ps ) } |