Step |
Hyp |
Ref |
Expression |
1 |
|
truni |
|- ( A. y e. { x | ( ph /\ Tr x /\ ps ) } Tr y -> Tr U. { x | ( ph /\ Tr x /\ ps ) } ) |
2 |
|
nfsbc1v |
|- F/ x [. y / x ]. ph |
3 |
|
nfv |
|- F/ x Tr y |
4 |
|
nfsbc1v |
|- F/ x [. y / x ]. ps |
5 |
2 3 4
|
nf3an |
|- F/ x ( [. y / x ]. ph /\ Tr y /\ [. y / x ]. ps ) |
6 |
|
vex |
|- y e. _V |
7 |
|
sbceq1a |
|- ( x = y -> ( ph <-> [. y / x ]. ph ) ) |
8 |
|
treq |
|- ( x = y -> ( Tr x <-> Tr y ) ) |
9 |
|
sbceq1a |
|- ( x = y -> ( ps <-> [. y / x ]. ps ) ) |
10 |
7 8 9
|
3anbi123d |
|- ( x = y -> ( ( ph /\ Tr x /\ ps ) <-> ( [. y / x ]. ph /\ Tr y /\ [. y / x ]. ps ) ) ) |
11 |
5 6 10
|
elabf |
|- ( y e. { x | ( ph /\ Tr x /\ ps ) } <-> ( [. y / x ]. ph /\ Tr y /\ [. y / x ]. ps ) ) |
12 |
11
|
simp2bi |
|- ( y e. { x | ( ph /\ Tr x /\ ps ) } -> Tr y ) |
13 |
1 12
|
mprg |
|- Tr U. { x | ( ph /\ Tr x /\ ps ) } |