Metamath Proof Explorer


Theorem dfon2lem4

Description: Lemma for dfon2 . If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011)

Ref Expression
Hypotheses dfon2lem4.1 A V
dfon2lem4.2 B V
Assertion dfon2lem4 x x A Tr x x A y y B Tr y y B A B B A

Proof

Step Hyp Ref Expression
1 dfon2lem4.1 A V
2 dfon2lem4.2 B V
3 inss1 A B A
4 3 sseli A B A B A B A
5 dfon2lem3 A V x x A Tr x x A Tr A z A ¬ z z
6 1 5 ax-mp x x A Tr x x A Tr A z A ¬ z z
7 6 simprd x x A Tr x x A z A ¬ z z
8 eleq1 z = A B z z A B z
9 eleq2 z = A B A B z A B A B
10 8 9 bitrd z = A B z z A B A B
11 10 notbid z = A B ¬ z z ¬ A B A B
12 11 rspccv z A ¬ z z A B A ¬ A B A B
13 7 12 syl x x A Tr x x A A B A ¬ A B A B
14 13 adantr x x A Tr x x A y y B Tr y y B A B A ¬ A B A B
15 4 14 syl5 x x A Tr x x A y y B Tr y y B A B A B ¬ A B A B
16 15 pm2.01d x x A Tr x x A y y B Tr y y B ¬ A B A B
17 elin A B A B A B A A B B
18 16 17 sylnib x x A Tr x x A y y B Tr y y B ¬ A B A A B B
19 6 simpld x x A Tr x x A Tr A
20 dfon2lem3 B V y y B Tr y y B Tr B z B ¬ z z
21 2 20 ax-mp y y B Tr y y B Tr B z B ¬ z z
22 21 simpld y y B Tr y y B Tr B
23 trin Tr A Tr B Tr A B
24 19 22 23 syl2an x x A Tr x x A y y B Tr y y B Tr A B
25 1 inex1 A B V
26 psseq1 x = A B x A A B A
27 treq x = A B Tr x Tr A B
28 26 27 anbi12d x = A B x A Tr x A B A Tr A B
29 eleq1 x = A B x A A B A
30 28 29 imbi12d x = A B x A Tr x x A A B A Tr A B A B A
31 25 30 spcv x x A Tr x x A A B A Tr A B A B A
32 31 adantr x x A Tr x x A y y B Tr y y B A B A Tr A B A B A
33 24 32 mpan2d x x A Tr x x A y y B Tr y y B A B A A B A
34 psseq1 y = A B y B A B B
35 treq y = A B Tr y Tr A B
36 34 35 anbi12d y = A B y B Tr y A B B Tr A B
37 eleq1 y = A B y B A B B
38 36 37 imbi12d y = A B y B Tr y y B A B B Tr A B A B B
39 25 38 spcv y y B Tr y y B A B B Tr A B A B B
40 39 adantl x x A Tr x x A y y B Tr y y B A B B Tr A B A B B
41 24 40 mpan2d x x A Tr x x A y y B Tr y y B A B B A B B
42 33 41 anim12d x x A Tr x x A y y B Tr y y B A B A A B B A B A A B B
43 18 42 mtod x x A Tr x x A y y B Tr y y B ¬ A B A A B B
44 ianor ¬ A B A A B B ¬ A B A ¬ A B B
45 43 44 sylib x x A Tr x x A y y B Tr y y B ¬ A B A ¬ A B B
46 sspss A B A A B A A B = A
47 3 46 mpbi A B A A B = A
48 inss2 A B B
49 sspss A B B A B B A B = B
50 48 49 mpbi A B B A B = B
51 orel1 ¬ A B A A B A A B = A A B = A
52 orc A B = A A B = A A B = B
53 51 52 syl6 ¬ A B A A B A A B = A A B = A A B = B
54 orel1 ¬ A B B A B B A B = B A B = B
55 olc A B = B A B = A A B = B
56 54 55 syl6 ¬ A B B A B B A B = B A B = A A B = B
57 53 56 jaoa ¬ A B A ¬ A B B A B A A B = A A B B A B = B A B = A A B = B
58 47 50 57 mp2ani ¬ A B A ¬ A B B A B = A A B = B
59 45 58 syl x x A Tr x x A y y B Tr y y B A B = A A B = B
60 df-ss A B A B = A
61 sseqin2 B A A B = B
62 60 61 orbi12i A B B A A B = A A B = B
63 59 62 sylibr x x A Tr x x A y y B Tr y y B A B B A