Metamath Proof Explorer


Theorem dfon2lem5

Description: Lemma for dfon2 . Two sets satisfying the new definition also satisfy trichotomy with respect to e. . (Contributed by Scott Fenton, 25-Feb-2011)

Ref Expression
Hypotheses dfon2lem5.1 AV
dfon2lem5.2 BV
Assertion dfon2lem5 xxATrxxAyyBTryyBABA=BBA

Proof

Step Hyp Ref Expression
1 dfon2lem5.1 AV
2 dfon2lem5.2 BV
3 1 2 dfon2lem4 xxATrxxAyyBTryyBABBA
4 dfpss2 ABAB¬A=B
5 dfpss2 BABA¬B=A
6 eqcom B=AA=B
7 6 notbii ¬B=A¬A=B
8 7 anbi2i BA¬B=ABA¬A=B
9 5 8 bitri BABA¬A=B
10 4 9 orbi12i ABBAAB¬A=BBA¬A=B
11 andir ABBA¬A=BAB¬A=BBA¬A=B
12 10 11 bitr4i ABBAABBA¬A=B
13 orcom ABBABAAB
14 dfon2lem3 BVyyBTryyBTrBzB¬zz
15 2 14 ax-mp yyBTryyBTrBzB¬zz
16 15 simpld yyBTryyBTrB
17 psseq1 x=BxABA
18 treq x=BTrxTrB
19 17 18 anbi12d x=BxATrxBATrB
20 eleq1 x=BxABA
21 19 20 imbi12d x=BxATrxxABATrBBA
22 2 21 spcv xxATrxxABATrBBA
23 22 expcomd xxATrxxATrBBABA
24 23 imp xxATrxxATrBBABA
25 16 24 sylan2 xxATrxxAyyBTryyBBABA
26 dfon2lem3 AVxxATrxxATrAzA¬zz
27 1 26 ax-mp xxATrxxATrAzA¬zz
28 27 simpld xxATrxxATrA
29 psseq1 y=AyBAB
30 treq y=ATryTrA
31 29 30 anbi12d y=AyBTryABTrA
32 eleq1 y=AyBAB
33 31 32 imbi12d y=AyBTryyBABTrAAB
34 1 33 spcv yyBTryyBABTrAAB
35 34 expcomd yyBTryyBTrAABAB
36 28 35 mpan9 xxATrxxAyyBTryyBABAB
37 25 36 orim12d xxATrxxAyyBTryyBBAABBAAB
38 13 37 biimtrid xxATrxxAyyBTryyBABBABAAB
39 12 38 biimtrrid xxATrxxAyyBTryyBABBA¬A=BBAAB
40 3 39 mpand xxATrxxAyyBTryyB¬A=BBAAB
41 3orrot ABA=BBAA=BBAAB
42 3orass A=BBAABA=BBAAB
43 df-or A=BBAAB¬A=BBAAB
44 42 43 bitri A=BBAAB¬A=BBAAB
45 41 44 bitri ABA=BBA¬A=BBAAB
46 40 45 sylibr xxATrxxAyyBTryyBABA=BBA