Step |
Hyp |
Ref |
Expression |
1 |
|
dfon2lem5.1 |
⊢ 𝐴 ∈ V |
2 |
|
dfon2lem5.2 |
⊢ 𝐵 ∈ V |
3 |
1 2
|
dfon2lem4 |
⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
4 |
|
dfpss2 |
⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) |
5 |
|
dfpss2 |
⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) |
6 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
7 |
6
|
notbii |
⊢ ( ¬ 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵 ) |
8 |
7
|
anbi2i |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) |
9 |
5 8
|
bitri |
⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) |
10 |
4 9
|
orbi12i |
⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) ) |
11 |
|
andir |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ∧ ¬ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) ) |
12 |
10 11
|
bitr4i |
⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ∧ ¬ 𝐴 = 𝐵 ) ) |
13 |
|
orcom |
⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 ⊊ 𝐵 ) ) |
14 |
|
dfon2lem3 |
⊢ ( 𝐵 ∈ V → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → ( Tr 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 ∈ 𝑧 ) ) ) |
15 |
2 14
|
ax-mp |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → ( Tr 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 ∈ 𝑧 ) ) |
16 |
15
|
simpld |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → Tr 𝐵 ) |
17 |
|
psseq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ⊊ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
18 |
|
treq |
⊢ ( 𝑥 = 𝐵 → ( Tr 𝑥 ↔ Tr 𝐵 ) ) |
19 |
17 18
|
anbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) ↔ ( 𝐵 ⊊ 𝐴 ∧ Tr 𝐵 ) ) ) |
20 |
|
eleq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
21 |
19 20
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ↔ ( ( 𝐵 ⊊ 𝐴 ∧ Tr 𝐵 ) → 𝐵 ∈ 𝐴 ) ) ) |
22 |
2 21
|
spcv |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ⊊ 𝐴 ∧ Tr 𝐵 ) → 𝐵 ∈ 𝐴 ) ) |
23 |
22
|
expcomd |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( Tr 𝐵 → ( 𝐵 ⊊ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) |
24 |
23
|
imp |
⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ Tr 𝐵 ) → ( 𝐵 ⊊ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
25 |
16 24
|
sylan2 |
⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( 𝐵 ⊊ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
26 |
|
dfon2lem3 |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) ) |
27 |
1 26
|
ax-mp |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) |
28 |
27
|
simpld |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → Tr 𝐴 ) |
29 |
|
psseq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊊ 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |
30 |
|
treq |
⊢ ( 𝑦 = 𝐴 → ( Tr 𝑦 ↔ Tr 𝐴 ) ) |
31 |
29 30
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) ↔ ( 𝐴 ⊊ 𝐵 ∧ Tr 𝐴 ) ) ) |
32 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
33 |
31 32
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∧ Tr 𝐴 ) → 𝐴 ∈ 𝐵 ) ) ) |
34 |
1 33
|
spcv |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ⊊ 𝐵 ∧ Tr 𝐴 ) → 𝐴 ∈ 𝐵 ) ) |
35 |
34
|
expcomd |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → ( Tr 𝐴 → ( 𝐴 ⊊ 𝐵 → 𝐴 ∈ 𝐵 ) ) ) |
36 |
28 35
|
mpan9 |
⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ⊊ 𝐵 → 𝐴 ∈ 𝐵 ) ) |
37 |
25 36
|
orim12d |
⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( 𝐵 ⊊ 𝐴 ∨ 𝐴 ⊊ 𝐵 ) → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
38 |
13 37
|
syl5bi |
⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
39 |
12 38
|
syl5bir |
⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ∧ ¬ 𝐴 = 𝐵 ) → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
40 |
3 39
|
mpand |
⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ¬ 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
41 |
|
3orrot |
⊢ ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) |
42 |
|
3orass |
⊢ ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ↔ ( 𝐴 = 𝐵 ∨ ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
43 |
|
df-or |
⊢ ( ( 𝐴 = 𝐵 ∨ ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ↔ ( ¬ 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
44 |
42 43
|
bitri |
⊢ ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ↔ ( ¬ 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
45 |
41 44
|
bitri |
⊢ ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ( ¬ 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
46 |
40 45
|
sylibr |
⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) |