Metamath Proof Explorer


Theorem dfon2lem6

Description: Lemma for dfon2 . A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011)

Ref Expression
Assertion dfon2lem6 ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) → ∀ 𝑦 ( ( 𝑦𝑆 ∧ Tr 𝑦 ) → 𝑦𝑆 ) )

Proof

Step Hyp Ref Expression
1 pssss ( 𝑦𝑆𝑦𝑆 )
2 ssralv ( 𝑦𝑆 → ( ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) → ∀ 𝑥𝑦𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) )
3 1 2 syl ( 𝑦𝑆 → ( ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) → ∀ 𝑥𝑦𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) )
4 3 impcom ( ( ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ∧ 𝑦𝑆 ) → ∀ 𝑥𝑦𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) )
5 4 adantrr ( ( ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ∧ ( 𝑦𝑆 ∧ Tr 𝑦 ) ) → ∀ 𝑥𝑦𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) )
6 5 ad2ant2lr ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) → ∀ 𝑥𝑦𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) )
7 psseq2 ( 𝑥 = 𝑤 → ( 𝑧𝑥𝑧𝑤 ) )
8 7 anbi1d ( 𝑥 = 𝑤 → ( ( 𝑧𝑥 ∧ Tr 𝑧 ) ↔ ( 𝑧𝑤 ∧ Tr 𝑧 ) ) )
9 elequ2 ( 𝑥 = 𝑤 → ( 𝑧𝑥𝑧𝑤 ) )
10 8 9 imbi12d ( 𝑥 = 𝑤 → ( ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ↔ ( ( 𝑧𝑤 ∧ Tr 𝑧 ) → 𝑧𝑤 ) ) )
11 10 albidv ( 𝑥 = 𝑤 → ( ∀ 𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ↔ ∀ 𝑧 ( ( 𝑧𝑤 ∧ Tr 𝑧 ) → 𝑧𝑤 ) ) )
12 11 rspccv ( ∀ 𝑥𝑦𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) → ( 𝑤𝑦 → ∀ 𝑧 ( ( 𝑧𝑤 ∧ Tr 𝑧 ) → 𝑧𝑤 ) ) )
13 6 12 syl ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) → ( 𝑤𝑦 → ∀ 𝑧 ( ( 𝑧𝑤 ∧ Tr 𝑧 ) → 𝑧𝑤 ) ) )
14 13 imp ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) ∧ 𝑤𝑦 ) → ∀ 𝑧 ( ( 𝑧𝑤 ∧ Tr 𝑧 ) → 𝑧𝑤 ) )
15 eldifi ( 𝑠 ∈ ( 𝑆𝑦 ) → 𝑠𝑆 )
16 psseq2 ( 𝑥 = 𝑠 → ( 𝑧𝑥𝑧𝑠 ) )
17 16 anbi1d ( 𝑥 = 𝑠 → ( ( 𝑧𝑥 ∧ Tr 𝑧 ) ↔ ( 𝑧𝑠 ∧ Tr 𝑧 ) ) )
18 elequ2 ( 𝑥 = 𝑠 → ( 𝑧𝑥𝑧𝑠 ) )
19 17 18 imbi12d ( 𝑥 = 𝑠 → ( ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ↔ ( ( 𝑧𝑠 ∧ Tr 𝑧 ) → 𝑧𝑠 ) ) )
20 19 albidv ( 𝑥 = 𝑠 → ( ∀ 𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ↔ ∀ 𝑧 ( ( 𝑧𝑠 ∧ Tr 𝑧 ) → 𝑧𝑠 ) ) )
21 20 rspcv ( 𝑠𝑆 → ( ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) → ∀ 𝑧 ( ( 𝑧𝑠 ∧ Tr 𝑧 ) → 𝑧𝑠 ) ) )
22 15 21 syl ( 𝑠 ∈ ( 𝑆𝑦 ) → ( ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) → ∀ 𝑧 ( ( 𝑧𝑠 ∧ Tr 𝑧 ) → 𝑧𝑠 ) ) )
23 psseq1 ( 𝑧 = 𝑡 → ( 𝑧𝑠𝑡𝑠 ) )
24 treq ( 𝑧 = 𝑡 → ( Tr 𝑧 ↔ Tr 𝑡 ) )
25 23 24 anbi12d ( 𝑧 = 𝑡 → ( ( 𝑧𝑠 ∧ Tr 𝑧 ) ↔ ( 𝑡𝑠 ∧ Tr 𝑡 ) ) )
26 elequ1 ( 𝑧 = 𝑡 → ( 𝑧𝑠𝑡𝑠 ) )
27 25 26 imbi12d ( 𝑧 = 𝑡 → ( ( ( 𝑧𝑠 ∧ Tr 𝑧 ) → 𝑧𝑠 ) ↔ ( ( 𝑡𝑠 ∧ Tr 𝑡 ) → 𝑡𝑠 ) ) )
28 27 cbvalvw ( ∀ 𝑧 ( ( 𝑧𝑠 ∧ Tr 𝑧 ) → 𝑧𝑠 ) ↔ ∀ 𝑡 ( ( 𝑡𝑠 ∧ Tr 𝑡 ) → 𝑡𝑠 ) )
29 22 28 syl6ib ( 𝑠 ∈ ( 𝑆𝑦 ) → ( ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑠 ∧ Tr 𝑡 ) → 𝑡𝑠 ) ) )
30 29 impcom ( ( ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) → ∀ 𝑡 ( ( 𝑡𝑠 ∧ Tr 𝑡 ) → 𝑡𝑠 ) )
31 30 ad2ant2l ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) → ∀ 𝑡 ( ( 𝑡𝑠 ∧ Tr 𝑡 ) → 𝑡𝑠 ) )
32 31 adantr ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) ∧ 𝑤𝑦 ) → ∀ 𝑡 ( ( 𝑡𝑠 ∧ Tr 𝑡 ) → 𝑡𝑠 ) )
33 vex 𝑤 ∈ V
34 vex 𝑠 ∈ V
35 33 34 dfon2lem5 ( ( ∀ 𝑧 ( ( 𝑧𝑤 ∧ Tr 𝑧 ) → 𝑧𝑤 ) ∧ ∀ 𝑡 ( ( 𝑡𝑠 ∧ Tr 𝑡 ) → 𝑡𝑠 ) ) → ( 𝑤𝑠𝑤 = 𝑠𝑠𝑤 ) )
36 3orrot ( ( 𝑤𝑠𝑤 = 𝑠𝑠𝑤 ) ↔ ( 𝑤 = 𝑠𝑠𝑤𝑤𝑠 ) )
37 3orass ( ( 𝑤 = 𝑠𝑠𝑤𝑤𝑠 ) ↔ ( 𝑤 = 𝑠 ∨ ( 𝑠𝑤𝑤𝑠 ) ) )
38 36 37 bitri ( ( 𝑤𝑠𝑤 = 𝑠𝑠𝑤 ) ↔ ( 𝑤 = 𝑠 ∨ ( 𝑠𝑤𝑤𝑠 ) ) )
39 eleq1a ( 𝑠 ∈ ( 𝑆𝑦 ) → ( 𝑤 = 𝑠𝑤 ∈ ( 𝑆𝑦 ) ) )
40 elndif ( 𝑤𝑦 → ¬ 𝑤 ∈ ( 𝑆𝑦 ) )
41 39 40 nsyli ( 𝑠 ∈ ( 𝑆𝑦 ) → ( 𝑤𝑦 → ¬ 𝑤 = 𝑠 ) )
42 41 imp ( ( 𝑠 ∈ ( 𝑆𝑦 ) ∧ 𝑤𝑦 ) → ¬ 𝑤 = 𝑠 )
43 42 adantll ( ( ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ∧ 𝑤𝑦 ) → ¬ 𝑤 = 𝑠 )
44 43 adantll ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) ∧ 𝑤𝑦 ) → ¬ 𝑤 = 𝑠 )
45 orel1 ( ¬ 𝑤 = 𝑠 → ( ( 𝑤 = 𝑠 ∨ ( 𝑠𝑤𝑤𝑠 ) ) → ( 𝑠𝑤𝑤𝑠 ) ) )
46 trss ( Tr 𝑦 → ( 𝑤𝑦𝑤𝑦 ) )
47 eldifn ( 𝑠 ∈ ( 𝑆𝑦 ) → ¬ 𝑠𝑦 )
48 ssel ( 𝑤𝑦 → ( 𝑠𝑤𝑠𝑦 ) )
49 48 con3d ( 𝑤𝑦 → ( ¬ 𝑠𝑦 → ¬ 𝑠𝑤 ) )
50 47 49 syl5com ( 𝑠 ∈ ( 𝑆𝑦 ) → ( 𝑤𝑦 → ¬ 𝑠𝑤 ) )
51 46 50 syl9 ( Tr 𝑦 → ( 𝑠 ∈ ( 𝑆𝑦 ) → ( 𝑤𝑦 → ¬ 𝑠𝑤 ) ) )
52 51 adantl ( ( 𝑦𝑆 ∧ Tr 𝑦 ) → ( 𝑠 ∈ ( 𝑆𝑦 ) → ( 𝑤𝑦 → ¬ 𝑠𝑤 ) ) )
53 52 imp31 ( ( ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ∧ 𝑤𝑦 ) → ¬ 𝑠𝑤 )
54 53 adantll ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) ∧ 𝑤𝑦 ) → ¬ 𝑠𝑤 )
55 orel1 ( ¬ 𝑠𝑤 → ( ( 𝑠𝑤𝑤𝑠 ) → 𝑤𝑠 ) )
56 54 55 syl ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) ∧ 𝑤𝑦 ) → ( ( 𝑠𝑤𝑤𝑠 ) → 𝑤𝑠 ) )
57 45 56 syl9r ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) ∧ 𝑤𝑦 ) → ( ¬ 𝑤 = 𝑠 → ( ( 𝑤 = 𝑠 ∨ ( 𝑠𝑤𝑤𝑠 ) ) → 𝑤𝑠 ) ) )
58 44 57 mpd ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) ∧ 𝑤𝑦 ) → ( ( 𝑤 = 𝑠 ∨ ( 𝑠𝑤𝑤𝑠 ) ) → 𝑤𝑠 ) )
59 38 58 syl5bi ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) ∧ 𝑤𝑦 ) → ( ( 𝑤𝑠𝑤 = 𝑠𝑠𝑤 ) → 𝑤𝑠 ) )
60 35 59 syl5 ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) ∧ 𝑤𝑦 ) → ( ( ∀ 𝑧 ( ( 𝑧𝑤 ∧ Tr 𝑧 ) → 𝑧𝑤 ) ∧ ∀ 𝑡 ( ( 𝑡𝑠 ∧ Tr 𝑡 ) → 𝑡𝑠 ) ) → 𝑤𝑠 ) )
61 14 32 60 mp2and ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) ∧ 𝑤𝑦 ) → 𝑤𝑠 )
62 61 ex ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) → ( 𝑤𝑦𝑤𝑠 ) )
63 62 ssrdv ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) → 𝑦𝑠 )
64 dfpss2 ( 𝑦𝑠 ↔ ( 𝑦𝑠 ∧ ¬ 𝑦 = 𝑠 ) )
65 psseq1 ( 𝑧 = 𝑦 → ( 𝑧𝑠𝑦𝑠 ) )
66 treq ( 𝑧 = 𝑦 → ( Tr 𝑧 ↔ Tr 𝑦 ) )
67 65 66 anbi12d ( 𝑧 = 𝑦 → ( ( 𝑧𝑠 ∧ Tr 𝑧 ) ↔ ( 𝑦𝑠 ∧ Tr 𝑦 ) ) )
68 elequ1 ( 𝑧 = 𝑦 → ( 𝑧𝑠𝑦𝑠 ) )
69 67 68 imbi12d ( 𝑧 = 𝑦 → ( ( ( 𝑧𝑠 ∧ Tr 𝑧 ) → 𝑧𝑠 ) ↔ ( ( 𝑦𝑠 ∧ Tr 𝑦 ) → 𝑦𝑠 ) ) )
70 69 spvv ( ∀ 𝑧 ( ( 𝑧𝑠 ∧ Tr 𝑧 ) → 𝑧𝑠 ) → ( ( 𝑦𝑠 ∧ Tr 𝑦 ) → 𝑦𝑠 ) )
71 70 expd ( ∀ 𝑧 ( ( 𝑧𝑠 ∧ Tr 𝑧 ) → 𝑧𝑠 ) → ( 𝑦𝑠 → ( Tr 𝑦𝑦𝑠 ) ) )
72 71 com23 ( ∀ 𝑧 ( ( 𝑧𝑠 ∧ Tr 𝑧 ) → 𝑧𝑠 ) → ( Tr 𝑦 → ( 𝑦𝑠𝑦𝑠 ) ) )
73 22 72 syl6 ( 𝑠 ∈ ( 𝑆𝑦 ) → ( ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) → ( Tr 𝑦 → ( 𝑦𝑠𝑦𝑠 ) ) ) )
74 73 com3l ( ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) → ( Tr 𝑦 → ( 𝑠 ∈ ( 𝑆𝑦 ) → ( 𝑦𝑠𝑦𝑠 ) ) ) )
75 74 adantld ( ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) → ( ( 𝑦𝑆 ∧ Tr 𝑦 ) → ( 𝑠 ∈ ( 𝑆𝑦 ) → ( 𝑦𝑠𝑦𝑠 ) ) ) )
76 75 adantl ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) → ( ( 𝑦𝑆 ∧ Tr 𝑦 ) → ( 𝑠 ∈ ( 𝑆𝑦 ) → ( 𝑦𝑠𝑦𝑠 ) ) ) )
77 76 imp32 ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) → ( 𝑦𝑠𝑦𝑠 ) )
78 64 77 syl5bir ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) → ( ( 𝑦𝑠 ∧ ¬ 𝑦 = 𝑠 ) → 𝑦𝑠 ) )
79 63 78 mpand ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) → ( ¬ 𝑦 = 𝑠𝑦𝑠 ) )
80 79 orrd ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( ( 𝑦𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) ) → ( 𝑦 = 𝑠𝑦𝑠 ) )
81 80 anassrs ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( 𝑦𝑆 ∧ Tr 𝑦 ) ) ∧ 𝑠 ∈ ( 𝑆𝑦 ) ) → ( 𝑦 = 𝑠𝑦𝑠 ) )
82 81 ralrimiva ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( 𝑦𝑆 ∧ Tr 𝑦 ) ) → ∀ 𝑠 ∈ ( 𝑆𝑦 ) ( 𝑦 = 𝑠𝑦𝑠 ) )
83 pssdif ( 𝑦𝑆 → ( 𝑆𝑦 ) ≠ ∅ )
84 r19.2z ( ( ( 𝑆𝑦 ) ≠ ∅ ∧ ∀ 𝑠 ∈ ( 𝑆𝑦 ) ( 𝑦 = 𝑠𝑦𝑠 ) ) → ∃ 𝑠 ∈ ( 𝑆𝑦 ) ( 𝑦 = 𝑠𝑦𝑠 ) )
85 84 ex ( ( 𝑆𝑦 ) ≠ ∅ → ( ∀ 𝑠 ∈ ( 𝑆𝑦 ) ( 𝑦 = 𝑠𝑦𝑠 ) → ∃ 𝑠 ∈ ( 𝑆𝑦 ) ( 𝑦 = 𝑠𝑦𝑠 ) ) )
86 83 85 syl ( 𝑦𝑆 → ( ∀ 𝑠 ∈ ( 𝑆𝑦 ) ( 𝑦 = 𝑠𝑦𝑠 ) → ∃ 𝑠 ∈ ( 𝑆𝑦 ) ( 𝑦 = 𝑠𝑦𝑠 ) ) )
87 86 ad2antrl ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( 𝑦𝑆 ∧ Tr 𝑦 ) ) → ( ∀ 𝑠 ∈ ( 𝑆𝑦 ) ( 𝑦 = 𝑠𝑦𝑠 ) → ∃ 𝑠 ∈ ( 𝑆𝑦 ) ( 𝑦 = 𝑠𝑦𝑠 ) ) )
88 eleq1w ( 𝑦 = 𝑠 → ( 𝑦𝑆𝑠𝑆 ) )
89 15 88 syl5ibr ( 𝑦 = 𝑠 → ( 𝑠 ∈ ( 𝑆𝑦 ) → 𝑦𝑆 ) )
90 89 a1i ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( 𝑦𝑆 ∧ Tr 𝑦 ) ) → ( 𝑦 = 𝑠 → ( 𝑠 ∈ ( 𝑆𝑦 ) → 𝑦𝑆 ) ) )
91 trel ( Tr 𝑆 → ( ( 𝑦𝑠𝑠𝑆 ) → 𝑦𝑆 ) )
92 91 expd ( Tr 𝑆 → ( 𝑦𝑠 → ( 𝑠𝑆𝑦𝑆 ) ) )
93 15 92 syl7 ( Tr 𝑆 → ( 𝑦𝑠 → ( 𝑠 ∈ ( 𝑆𝑦 ) → 𝑦𝑆 ) ) )
94 93 ad2antrr ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( 𝑦𝑆 ∧ Tr 𝑦 ) ) → ( 𝑦𝑠 → ( 𝑠 ∈ ( 𝑆𝑦 ) → 𝑦𝑆 ) ) )
95 90 94 jaod ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( 𝑦𝑆 ∧ Tr 𝑦 ) ) → ( ( 𝑦 = 𝑠𝑦𝑠 ) → ( 𝑠 ∈ ( 𝑆𝑦 ) → 𝑦𝑆 ) ) )
96 95 com23 ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( 𝑦𝑆 ∧ Tr 𝑦 ) ) → ( 𝑠 ∈ ( 𝑆𝑦 ) → ( ( 𝑦 = 𝑠𝑦𝑠 ) → 𝑦𝑆 ) ) )
97 96 rexlimdv ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( 𝑦𝑆 ∧ Tr 𝑦 ) ) → ( ∃ 𝑠 ∈ ( 𝑆𝑦 ) ( 𝑦 = 𝑠𝑦𝑠 ) → 𝑦𝑆 ) )
98 87 97 syld ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( 𝑦𝑆 ∧ Tr 𝑦 ) ) → ( ∀ 𝑠 ∈ ( 𝑆𝑦 ) ( 𝑦 = 𝑠𝑦𝑠 ) → 𝑦𝑆 ) )
99 82 98 mpd ( ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) ∧ ( 𝑦𝑆 ∧ Tr 𝑦 ) ) → 𝑦𝑆 )
100 99 ex ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) → ( ( 𝑦𝑆 ∧ Tr 𝑦 ) → 𝑦𝑆 ) )
101 100 alrimiv ( ( Tr 𝑆 ∧ ∀ 𝑥𝑆𝑧 ( ( 𝑧𝑥 ∧ Tr 𝑧 ) → 𝑧𝑥 ) ) → ∀ 𝑦 ( ( 𝑦𝑆 ∧ Tr 𝑦 ) → 𝑦𝑆 ) )