| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pssss | ⊢ ( 𝑦  ⊊  𝑆  →  𝑦  ⊆  𝑆 ) | 
						
							| 2 |  | ssralv | ⊢ ( 𝑦  ⊆  𝑆  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  →  ∀ 𝑥  ∈  𝑦 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑦  ⊊  𝑆  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  →  ∀ 𝑥  ∈  𝑦 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) ) ) | 
						
							| 4 | 3 | impcom | ⊢ ( ( ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  ∧  𝑦  ⊊  𝑆 )  →  ∀ 𝑥  ∈  𝑦 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 5 | 4 | adantrr | ⊢ ( ( ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  ∧  ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 ) )  →  ∀ 𝑥  ∈  𝑦 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 6 | 5 | ad2ant2lr | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  →  ∀ 𝑥  ∈  𝑦 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 7 |  | psseq2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑧  ⊊  𝑥  ↔  𝑧  ⊊  𝑤 ) ) | 
						
							| 8 | 7 | anbi1d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  ↔  ( 𝑧  ⊊  𝑤  ∧  Tr  𝑧 ) ) ) | 
						
							| 9 |  | elequ2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑤 ) ) | 
						
							| 10 | 8 9 | imbi12d | ⊢ ( 𝑥  =  𝑤  →  ( ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  ↔  ( ( 𝑧  ⊊  𝑤  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑤 ) ) ) | 
						
							| 11 | 10 | albidv | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 ( ( 𝑧  ⊊  𝑤  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑤 ) ) ) | 
						
							| 12 | 11 | rspccv | ⊢ ( ∀ 𝑥  ∈  𝑦 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  →  ( 𝑤  ∈  𝑦  →  ∀ 𝑧 ( ( 𝑧  ⊊  𝑤  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑤 ) ) ) | 
						
							| 13 | 6 12 | syl | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  →  ( 𝑤  ∈  𝑦  →  ∀ 𝑧 ( ( 𝑧  ⊊  𝑤  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑤 ) ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  ∧  𝑤  ∈  𝑦 )  →  ∀ 𝑧 ( ( 𝑧  ⊊  𝑤  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑤 ) ) | 
						
							| 15 |  | eldifi | ⊢ ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  𝑠  ∈  𝑆 ) | 
						
							| 16 |  | psseq2 | ⊢ ( 𝑥  =  𝑠  →  ( 𝑧  ⊊  𝑥  ↔  𝑧  ⊊  𝑠 ) ) | 
						
							| 17 | 16 | anbi1d | ⊢ ( 𝑥  =  𝑠  →  ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  ↔  ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 ) ) ) | 
						
							| 18 |  | elequ2 | ⊢ ( 𝑥  =  𝑠  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑠 ) ) | 
						
							| 19 | 17 18 | imbi12d | ⊢ ( 𝑥  =  𝑠  →  ( ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  ↔  ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑠 ) ) ) | 
						
							| 20 | 19 | albidv | ⊢ ( 𝑥  =  𝑠  →  ( ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑠 ) ) ) | 
						
							| 21 | 20 | rspcv | ⊢ ( 𝑠  ∈  𝑆  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  →  ∀ 𝑧 ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑠 ) ) ) | 
						
							| 22 | 15 21 | syl | ⊢ ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  →  ∀ 𝑧 ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑠 ) ) ) | 
						
							| 23 |  | psseq1 | ⊢ ( 𝑧  =  𝑡  →  ( 𝑧  ⊊  𝑠  ↔  𝑡  ⊊  𝑠 ) ) | 
						
							| 24 |  | treq | ⊢ ( 𝑧  =  𝑡  →  ( Tr  𝑧  ↔  Tr  𝑡 ) ) | 
						
							| 25 | 23 24 | anbi12d | ⊢ ( 𝑧  =  𝑡  →  ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  ↔  ( 𝑡  ⊊  𝑠  ∧  Tr  𝑡 ) ) ) | 
						
							| 26 |  | elequ1 | ⊢ ( 𝑧  =  𝑡  →  ( 𝑧  ∈  𝑠  ↔  𝑡  ∈  𝑠 ) ) | 
						
							| 27 | 25 26 | imbi12d | ⊢ ( 𝑧  =  𝑡  →  ( ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑠 )  ↔  ( ( 𝑡  ⊊  𝑠  ∧  Tr  𝑡 )  →  𝑡  ∈  𝑠 ) ) ) | 
						
							| 28 | 27 | cbvalvw | ⊢ ( ∀ 𝑧 ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑠 )  ↔  ∀ 𝑡 ( ( 𝑡  ⊊  𝑠  ∧  Tr  𝑡 )  →  𝑡  ∈  𝑠 ) ) | 
						
							| 29 | 22 28 | imbitrdi | ⊢ ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  →  ∀ 𝑡 ( ( 𝑡  ⊊  𝑠  ∧  Tr  𝑡 )  →  𝑡  ∈  𝑠 ) ) ) | 
						
							| 30 | 29 | impcom | ⊢ ( ( ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) )  →  ∀ 𝑡 ( ( 𝑡  ⊊  𝑠  ∧  Tr  𝑡 )  →  𝑡  ∈  𝑠 ) ) | 
						
							| 31 | 30 | ad2ant2l | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  →  ∀ 𝑡 ( ( 𝑡  ⊊  𝑠  ∧  Tr  𝑡 )  →  𝑡  ∈  𝑠 ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  ∧  𝑤  ∈  𝑦 )  →  ∀ 𝑡 ( ( 𝑡  ⊊  𝑠  ∧  Tr  𝑡 )  →  𝑡  ∈  𝑠 ) ) | 
						
							| 33 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 34 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 35 | 33 34 | dfon2lem5 | ⊢ ( ( ∀ 𝑧 ( ( 𝑧  ⊊  𝑤  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑤 )  ∧  ∀ 𝑡 ( ( 𝑡  ⊊  𝑠  ∧  Tr  𝑡 )  →  𝑡  ∈  𝑠 ) )  →  ( 𝑤  ∈  𝑠  ∨  𝑤  =  𝑠  ∨  𝑠  ∈  𝑤 ) ) | 
						
							| 36 |  | 3orrot | ⊢ ( ( 𝑤  ∈  𝑠  ∨  𝑤  =  𝑠  ∨  𝑠  ∈  𝑤 )  ↔  ( 𝑤  =  𝑠  ∨  𝑠  ∈  𝑤  ∨  𝑤  ∈  𝑠 ) ) | 
						
							| 37 |  | 3orass | ⊢ ( ( 𝑤  =  𝑠  ∨  𝑠  ∈  𝑤  ∨  𝑤  ∈  𝑠 )  ↔  ( 𝑤  =  𝑠  ∨  ( 𝑠  ∈  𝑤  ∨  𝑤  ∈  𝑠 ) ) ) | 
						
							| 38 | 36 37 | bitri | ⊢ ( ( 𝑤  ∈  𝑠  ∨  𝑤  =  𝑠  ∨  𝑠  ∈  𝑤 )  ↔  ( 𝑤  =  𝑠  ∨  ( 𝑠  ∈  𝑤  ∨  𝑤  ∈  𝑠 ) ) ) | 
						
							| 39 |  | eleq1a | ⊢ ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( 𝑤  =  𝑠  →  𝑤  ∈  ( 𝑆  ∖  𝑦 ) ) ) | 
						
							| 40 |  | elndif | ⊢ ( 𝑤  ∈  𝑦  →  ¬  𝑤  ∈  ( 𝑆  ∖  𝑦 ) ) | 
						
							| 41 | 39 40 | nsyli | ⊢ ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( 𝑤  ∈  𝑦  →  ¬  𝑤  =  𝑠 ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  ∧  𝑤  ∈  𝑦 )  →  ¬  𝑤  =  𝑠 ) | 
						
							| 43 | 42 | adantll | ⊢ ( ( ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) )  ∧  𝑤  ∈  𝑦 )  →  ¬  𝑤  =  𝑠 ) | 
						
							| 44 | 43 | adantll | ⊢ ( ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  ∧  𝑤  ∈  𝑦 )  →  ¬  𝑤  =  𝑠 ) | 
						
							| 45 |  | orel1 | ⊢ ( ¬  𝑤  =  𝑠  →  ( ( 𝑤  =  𝑠  ∨  ( 𝑠  ∈  𝑤  ∨  𝑤  ∈  𝑠 ) )  →  ( 𝑠  ∈  𝑤  ∨  𝑤  ∈  𝑠 ) ) ) | 
						
							| 46 |  | trss | ⊢ ( Tr  𝑦  →  ( 𝑤  ∈  𝑦  →  𝑤  ⊆  𝑦 ) ) | 
						
							| 47 |  | eldifn | ⊢ ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ¬  𝑠  ∈  𝑦 ) | 
						
							| 48 |  | ssel | ⊢ ( 𝑤  ⊆  𝑦  →  ( 𝑠  ∈  𝑤  →  𝑠  ∈  𝑦 ) ) | 
						
							| 49 | 48 | con3d | ⊢ ( 𝑤  ⊆  𝑦  →  ( ¬  𝑠  ∈  𝑦  →  ¬  𝑠  ∈  𝑤 ) ) | 
						
							| 50 | 47 49 | syl5com | ⊢ ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( 𝑤  ⊆  𝑦  →  ¬  𝑠  ∈  𝑤 ) ) | 
						
							| 51 | 46 50 | syl9 | ⊢ ( Tr  𝑦  →  ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( 𝑤  ∈  𝑦  →  ¬  𝑠  ∈  𝑤 ) ) ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  →  ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( 𝑤  ∈  𝑦  →  ¬  𝑠  ∈  𝑤 ) ) ) | 
						
							| 53 | 52 | imp31 | ⊢ ( ( ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) )  ∧  𝑤  ∈  𝑦 )  →  ¬  𝑠  ∈  𝑤 ) | 
						
							| 54 | 53 | adantll | ⊢ ( ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  ∧  𝑤  ∈  𝑦 )  →  ¬  𝑠  ∈  𝑤 ) | 
						
							| 55 |  | orel1 | ⊢ ( ¬  𝑠  ∈  𝑤  →  ( ( 𝑠  ∈  𝑤  ∨  𝑤  ∈  𝑠 )  →  𝑤  ∈  𝑠 ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  ∧  𝑤  ∈  𝑦 )  →  ( ( 𝑠  ∈  𝑤  ∨  𝑤  ∈  𝑠 )  →  𝑤  ∈  𝑠 ) ) | 
						
							| 57 | 45 56 | syl9r | ⊢ ( ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  ∧  𝑤  ∈  𝑦 )  →  ( ¬  𝑤  =  𝑠  →  ( ( 𝑤  =  𝑠  ∨  ( 𝑠  ∈  𝑤  ∨  𝑤  ∈  𝑠 ) )  →  𝑤  ∈  𝑠 ) ) ) | 
						
							| 58 | 44 57 | mpd | ⊢ ( ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  ∧  𝑤  ∈  𝑦 )  →  ( ( 𝑤  =  𝑠  ∨  ( 𝑠  ∈  𝑤  ∨  𝑤  ∈  𝑠 ) )  →  𝑤  ∈  𝑠 ) ) | 
						
							| 59 | 38 58 | biimtrid | ⊢ ( ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  ∧  𝑤  ∈  𝑦 )  →  ( ( 𝑤  ∈  𝑠  ∨  𝑤  =  𝑠  ∨  𝑠  ∈  𝑤 )  →  𝑤  ∈  𝑠 ) ) | 
						
							| 60 | 35 59 | syl5 | ⊢ ( ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  ∧  𝑤  ∈  𝑦 )  →  ( ( ∀ 𝑧 ( ( 𝑧  ⊊  𝑤  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑤 )  ∧  ∀ 𝑡 ( ( 𝑡  ⊊  𝑠  ∧  Tr  𝑡 )  →  𝑡  ∈  𝑠 ) )  →  𝑤  ∈  𝑠 ) ) | 
						
							| 61 | 14 32 60 | mp2and | ⊢ ( ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  ∧  𝑤  ∈  𝑦 )  →  𝑤  ∈  𝑠 ) | 
						
							| 62 | 61 | ex | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  →  ( 𝑤  ∈  𝑦  →  𝑤  ∈  𝑠 ) ) | 
						
							| 63 | 62 | ssrdv | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  →  𝑦  ⊆  𝑠 ) | 
						
							| 64 |  | dfpss2 | ⊢ ( 𝑦  ⊊  𝑠  ↔  ( 𝑦  ⊆  𝑠  ∧  ¬  𝑦  =  𝑠 ) ) | 
						
							| 65 |  | psseq1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ⊊  𝑠  ↔  𝑦  ⊊  𝑠 ) ) | 
						
							| 66 |  | treq | ⊢ ( 𝑧  =  𝑦  →  ( Tr  𝑧  ↔  Tr  𝑦 ) ) | 
						
							| 67 | 65 66 | anbi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  ↔  ( 𝑦  ⊊  𝑠  ∧  Tr  𝑦 ) ) ) | 
						
							| 68 |  | elequ1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ∈  𝑠  ↔  𝑦  ∈  𝑠 ) ) | 
						
							| 69 | 67 68 | imbi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑠 )  ↔  ( ( 𝑦  ⊊  𝑠  ∧  Tr  𝑦 )  →  𝑦  ∈  𝑠 ) ) ) | 
						
							| 70 | 69 | spvv | ⊢ ( ∀ 𝑧 ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑠 )  →  ( ( 𝑦  ⊊  𝑠  ∧  Tr  𝑦 )  →  𝑦  ∈  𝑠 ) ) | 
						
							| 71 | 70 | expd | ⊢ ( ∀ 𝑧 ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑠 )  →  ( 𝑦  ⊊  𝑠  →  ( Tr  𝑦  →  𝑦  ∈  𝑠 ) ) ) | 
						
							| 72 | 71 | com23 | ⊢ ( ∀ 𝑧 ( ( 𝑧  ⊊  𝑠  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑠 )  →  ( Tr  𝑦  →  ( 𝑦  ⊊  𝑠  →  𝑦  ∈  𝑠 ) ) ) | 
						
							| 73 | 22 72 | syl6 | ⊢ ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  →  ( Tr  𝑦  →  ( 𝑦  ⊊  𝑠  →  𝑦  ∈  𝑠 ) ) ) ) | 
						
							| 74 | 73 | com3l | ⊢ ( ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  →  ( Tr  𝑦  →  ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( 𝑦  ⊊  𝑠  →  𝑦  ∈  𝑠 ) ) ) ) | 
						
							| 75 | 74 | adantld | ⊢ ( ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 )  →  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  →  ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( 𝑦  ⊊  𝑠  →  𝑦  ∈  𝑠 ) ) ) ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  →  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  →  ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( 𝑦  ⊊  𝑠  →  𝑦  ∈  𝑠 ) ) ) ) | 
						
							| 77 | 76 | imp32 | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  →  ( 𝑦  ⊊  𝑠  →  𝑦  ∈  𝑠 ) ) | 
						
							| 78 | 64 77 | biimtrrid | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  →  ( ( 𝑦  ⊆  𝑠  ∧  ¬  𝑦  =  𝑠 )  →  𝑦  ∈  𝑠 ) ) | 
						
							| 79 | 63 78 | mpand | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  →  ( ¬  𝑦  =  𝑠  →  𝑦  ∈  𝑠 ) ) | 
						
							| 80 | 79 | orrd | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) ) )  →  ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 ) ) | 
						
							| 81 | 80 | anassrs | ⊢ ( ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 ) )  ∧  𝑠  ∈  ( 𝑆  ∖  𝑦 ) )  →  ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 ) ) | 
						
							| 82 | 81 | ralrimiva | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 ) )  →  ∀ 𝑠  ∈  ( 𝑆  ∖  𝑦 ) ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 ) ) | 
						
							| 83 |  | pssdif | ⊢ ( 𝑦  ⊊  𝑆  →  ( 𝑆  ∖  𝑦 )  ≠  ∅ ) | 
						
							| 84 |  | r19.2z | ⊢ ( ( ( 𝑆  ∖  𝑦 )  ≠  ∅  ∧  ∀ 𝑠  ∈  ( 𝑆  ∖  𝑦 ) ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 ) )  →  ∃ 𝑠  ∈  ( 𝑆  ∖  𝑦 ) ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 ) ) | 
						
							| 85 | 84 | ex | ⊢ ( ( 𝑆  ∖  𝑦 )  ≠  ∅  →  ( ∀ 𝑠  ∈  ( 𝑆  ∖  𝑦 ) ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 )  →  ∃ 𝑠  ∈  ( 𝑆  ∖  𝑦 ) ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 ) ) ) | 
						
							| 86 | 83 85 | syl | ⊢ ( 𝑦  ⊊  𝑆  →  ( ∀ 𝑠  ∈  ( 𝑆  ∖  𝑦 ) ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 )  →  ∃ 𝑠  ∈  ( 𝑆  ∖  𝑦 ) ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 ) ) ) | 
						
							| 87 | 86 | ad2antrl | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 ) )  →  ( ∀ 𝑠  ∈  ( 𝑆  ∖  𝑦 ) ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 )  →  ∃ 𝑠  ∈  ( 𝑆  ∖  𝑦 ) ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 ) ) ) | 
						
							| 88 |  | eleq1w | ⊢ ( 𝑦  =  𝑠  →  ( 𝑦  ∈  𝑆  ↔  𝑠  ∈  𝑆 ) ) | 
						
							| 89 | 15 88 | imbitrrid | ⊢ ( 𝑦  =  𝑠  →  ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  𝑦  ∈  𝑆 ) ) | 
						
							| 90 | 89 | a1i | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 ) )  →  ( 𝑦  =  𝑠  →  ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  𝑦  ∈  𝑆 ) ) ) | 
						
							| 91 |  | trel | ⊢ ( Tr  𝑆  →  ( ( 𝑦  ∈  𝑠  ∧  𝑠  ∈  𝑆 )  →  𝑦  ∈  𝑆 ) ) | 
						
							| 92 | 91 | expd | ⊢ ( Tr  𝑆  →  ( 𝑦  ∈  𝑠  →  ( 𝑠  ∈  𝑆  →  𝑦  ∈  𝑆 ) ) ) | 
						
							| 93 | 15 92 | syl7 | ⊢ ( Tr  𝑆  →  ( 𝑦  ∈  𝑠  →  ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  𝑦  ∈  𝑆 ) ) ) | 
						
							| 94 | 93 | ad2antrr | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 ) )  →  ( 𝑦  ∈  𝑠  →  ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  𝑦  ∈  𝑆 ) ) ) | 
						
							| 95 | 90 94 | jaod | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 ) )  →  ( ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 )  →  ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  𝑦  ∈  𝑆 ) ) ) | 
						
							| 96 | 95 | com23 | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 ) )  →  ( 𝑠  ∈  ( 𝑆  ∖  𝑦 )  →  ( ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 )  →  𝑦  ∈  𝑆 ) ) ) | 
						
							| 97 | 96 | rexlimdv | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 ) )  →  ( ∃ 𝑠  ∈  ( 𝑆  ∖  𝑦 ) ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 )  →  𝑦  ∈  𝑆 ) ) | 
						
							| 98 | 87 97 | syld | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 ) )  →  ( ∀ 𝑠  ∈  ( 𝑆  ∖  𝑦 ) ( 𝑦  =  𝑠  ∨  𝑦  ∈  𝑠 )  →  𝑦  ∈  𝑆 ) ) | 
						
							| 99 | 82 98 | mpd | ⊢ ( ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  ∧  ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 ) )  →  𝑦  ∈  𝑆 ) | 
						
							| 100 | 99 | ex | ⊢ ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  →  ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  →  𝑦  ∈  𝑆 ) ) | 
						
							| 101 | 100 | alrimiv | ⊢ ( ( Tr  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑧 ( ( 𝑧  ⊊  𝑥  ∧  Tr  𝑧 )  →  𝑧  ∈  𝑥 ) )  →  ∀ 𝑦 ( ( 𝑦  ⊊  𝑆  ∧  Tr  𝑦 )  →  𝑦  ∈  𝑆 ) ) |