Step |
Hyp |
Ref |
Expression |
1 |
|
pssss |
⊢ ( 𝑦 ⊊ 𝑆 → 𝑦 ⊆ 𝑆 ) |
2 |
|
ssralv |
⊢ ( 𝑦 ⊆ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑦 ⊊ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ) |
4 |
3
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ∧ 𝑦 ⊊ 𝑆 ) → ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) |
5 |
4
|
adantrr |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) |
6 |
5
|
ad2ant2lr |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) |
7 |
|
psseq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 ⊊ 𝑥 ↔ 𝑧 ⊊ 𝑤 ) ) |
8 |
7
|
anbi1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) ↔ ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) ) ) |
9 |
|
elequ2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) |
10 |
8 9
|
imbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ) ) |
11 |
10
|
albidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ) ) |
12 |
11
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ( 𝑤 ∈ 𝑦 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ) ) |
13 |
6 12
|
syl |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( 𝑤 ∈ 𝑦 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ) ) |
14 |
13
|
imp |
⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ) |
15 |
|
eldifi |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑠 ∈ 𝑆 ) |
16 |
|
psseq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝑧 ⊊ 𝑥 ↔ 𝑧 ⊊ 𝑠 ) ) |
17 |
16
|
anbi1d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) ↔ ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) ) ) |
18 |
|
elequ2 |
⊢ ( 𝑥 = 𝑠 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑠 ) ) |
19 |
17 18
|
imbi12d |
⊢ ( 𝑥 = 𝑠 → ( ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ) ) |
20 |
19
|
albidv |
⊢ ( 𝑥 = 𝑠 → ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ) ) |
21 |
20
|
rspcv |
⊢ ( 𝑠 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ) ) |
22 |
15 21
|
syl |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ) ) |
23 |
|
psseq1 |
⊢ ( 𝑧 = 𝑡 → ( 𝑧 ⊊ 𝑠 ↔ 𝑡 ⊊ 𝑠 ) ) |
24 |
|
treq |
⊢ ( 𝑧 = 𝑡 → ( Tr 𝑧 ↔ Tr 𝑡 ) ) |
25 |
23 24
|
anbi12d |
⊢ ( 𝑧 = 𝑡 → ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) ↔ ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) ) ) |
26 |
|
elequ1 |
⊢ ( 𝑧 = 𝑡 → ( 𝑧 ∈ 𝑠 ↔ 𝑡 ∈ 𝑠 ) ) |
27 |
25 26
|
imbi12d |
⊢ ( 𝑧 = 𝑡 → ( ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ↔ ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) ) |
28 |
27
|
cbvalvw |
⊢ ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ↔ ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) |
29 |
22 28
|
syl6ib |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) ) |
30 |
29
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) |
31 |
30
|
ad2ant2l |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) |
33 |
|
vex |
⊢ 𝑤 ∈ V |
34 |
|
vex |
⊢ 𝑠 ∈ V |
35 |
33 34
|
dfon2lem5 |
⊢ ( ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ∧ ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) → ( 𝑤 ∈ 𝑠 ∨ 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ) ) |
36 |
|
3orrot |
⊢ ( ( 𝑤 ∈ 𝑠 ∨ 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ) ↔ ( 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) |
37 |
|
3orass |
⊢ ( ( 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ↔ ( 𝑤 = 𝑠 ∨ ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) ) |
38 |
36 37
|
bitri |
⊢ ( ( 𝑤 ∈ 𝑠 ∨ 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ) ↔ ( 𝑤 = 𝑠 ∨ ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) ) |
39 |
|
eleq1a |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑤 = 𝑠 → 𝑤 ∈ ( 𝑆 ∖ 𝑦 ) ) ) |
40 |
|
elndif |
⊢ ( 𝑤 ∈ 𝑦 → ¬ 𝑤 ∈ ( 𝑆 ∖ 𝑦 ) ) |
41 |
39 40
|
nsyli |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑤 ∈ 𝑦 → ¬ 𝑤 = 𝑠 ) ) |
42 |
41
|
imp |
⊢ ( ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ∧ 𝑤 ∈ 𝑦 ) → ¬ 𝑤 = 𝑠 ) |
43 |
42
|
adantll |
⊢ ( ( ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ∧ 𝑤 ∈ 𝑦 ) → ¬ 𝑤 = 𝑠 ) |
44 |
43
|
adantll |
⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ¬ 𝑤 = 𝑠 ) |
45 |
|
orel1 |
⊢ ( ¬ 𝑤 = 𝑠 → ( ( 𝑤 = 𝑠 ∨ ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) → ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) ) |
46 |
|
trss |
⊢ ( Tr 𝑦 → ( 𝑤 ∈ 𝑦 → 𝑤 ⊆ 𝑦 ) ) |
47 |
|
eldifn |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ¬ 𝑠 ∈ 𝑦 ) |
48 |
|
ssel |
⊢ ( 𝑤 ⊆ 𝑦 → ( 𝑠 ∈ 𝑤 → 𝑠 ∈ 𝑦 ) ) |
49 |
48
|
con3d |
⊢ ( 𝑤 ⊆ 𝑦 → ( ¬ 𝑠 ∈ 𝑦 → ¬ 𝑠 ∈ 𝑤 ) ) |
50 |
47 49
|
syl5com |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑤 ⊆ 𝑦 → ¬ 𝑠 ∈ 𝑤 ) ) |
51 |
46 50
|
syl9 |
⊢ ( Tr 𝑦 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑤 ∈ 𝑦 → ¬ 𝑠 ∈ 𝑤 ) ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑤 ∈ 𝑦 → ¬ 𝑠 ∈ 𝑤 ) ) ) |
53 |
52
|
imp31 |
⊢ ( ( ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ∧ 𝑤 ∈ 𝑦 ) → ¬ 𝑠 ∈ 𝑤 ) |
54 |
53
|
adantll |
⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ¬ 𝑠 ∈ 𝑤 ) |
55 |
|
orel1 |
⊢ ( ¬ 𝑠 ∈ 𝑤 → ( ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) → 𝑤 ∈ 𝑠 ) ) |
56 |
54 55
|
syl |
⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ( ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) → 𝑤 ∈ 𝑠 ) ) |
57 |
45 56
|
syl9r |
⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ( ¬ 𝑤 = 𝑠 → ( ( 𝑤 = 𝑠 ∨ ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) → 𝑤 ∈ 𝑠 ) ) ) |
58 |
44 57
|
mpd |
⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ( ( 𝑤 = 𝑠 ∨ ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) → 𝑤 ∈ 𝑠 ) ) |
59 |
38 58
|
syl5bi |
⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ( ( 𝑤 ∈ 𝑠 ∨ 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ) → 𝑤 ∈ 𝑠 ) ) |
60 |
35 59
|
syl5 |
⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ( ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ∧ ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) → 𝑤 ∈ 𝑠 ) ) |
61 |
14 32 60
|
mp2and |
⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → 𝑤 ∈ 𝑠 ) |
62 |
61
|
ex |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑠 ) ) |
63 |
62
|
ssrdv |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → 𝑦 ⊆ 𝑠 ) |
64 |
|
dfpss2 |
⊢ ( 𝑦 ⊊ 𝑠 ↔ ( 𝑦 ⊆ 𝑠 ∧ ¬ 𝑦 = 𝑠 ) ) |
65 |
|
psseq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ⊊ 𝑠 ↔ 𝑦 ⊊ 𝑠 ) ) |
66 |
|
treq |
⊢ ( 𝑧 = 𝑦 → ( Tr 𝑧 ↔ Tr 𝑦 ) ) |
67 |
65 66
|
anbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) ↔ ( 𝑦 ⊊ 𝑠 ∧ Tr 𝑦 ) ) ) |
68 |
|
elequ1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑠 ↔ 𝑦 ∈ 𝑠 ) ) |
69 |
67 68
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ↔ ( ( 𝑦 ⊊ 𝑠 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑠 ) ) ) |
70 |
69
|
spvv |
⊢ ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) → ( ( 𝑦 ⊊ 𝑠 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑠 ) ) |
71 |
70
|
expd |
⊢ ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) → ( 𝑦 ⊊ 𝑠 → ( Tr 𝑦 → 𝑦 ∈ 𝑠 ) ) ) |
72 |
71
|
com23 |
⊢ ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) → ( Tr 𝑦 → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) ) |
73 |
22 72
|
syl6 |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ( Tr 𝑦 → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) ) ) |
74 |
73
|
com3l |
⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ( Tr 𝑦 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) ) ) |
75 |
74
|
adantld |
⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) ) ) |
76 |
75
|
adantl |
⊢ ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) → ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) ) ) |
77 |
76
|
imp32 |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) |
78 |
64 77
|
syl5bir |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( ( 𝑦 ⊆ 𝑠 ∧ ¬ 𝑦 = 𝑠 ) → 𝑦 ∈ 𝑠 ) ) |
79 |
63 78
|
mpand |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( ¬ 𝑦 = 𝑠 → 𝑦 ∈ 𝑠 ) ) |
80 |
79
|
orrd |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) |
81 |
80
|
anassrs |
⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) → ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) |
82 |
81
|
ralrimiva |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) |
83 |
|
pssdif |
⊢ ( 𝑦 ⊊ 𝑆 → ( 𝑆 ∖ 𝑦 ) ≠ ∅ ) |
84 |
|
r19.2z |
⊢ ( ( ( 𝑆 ∖ 𝑦 ) ≠ ∅ ∧ ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) → ∃ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) |
85 |
84
|
ex |
⊢ ( ( 𝑆 ∖ 𝑦 ) ≠ ∅ → ( ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → ∃ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) ) |
86 |
83 85
|
syl |
⊢ ( 𝑦 ⊊ 𝑆 → ( ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → ∃ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) ) |
87 |
86
|
ad2antrl |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → ∃ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) ) |
88 |
|
eleq1w |
⊢ ( 𝑦 = 𝑠 → ( 𝑦 ∈ 𝑆 ↔ 𝑠 ∈ 𝑆 ) ) |
89 |
15 88
|
syl5ibr |
⊢ ( 𝑦 = 𝑠 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑦 ∈ 𝑆 ) ) |
90 |
89
|
a1i |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( 𝑦 = 𝑠 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑦 ∈ 𝑆 ) ) ) |
91 |
|
trel |
⊢ ( Tr 𝑆 → ( ( 𝑦 ∈ 𝑠 ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) ) |
92 |
91
|
expd |
⊢ ( Tr 𝑆 → ( 𝑦 ∈ 𝑠 → ( 𝑠 ∈ 𝑆 → 𝑦 ∈ 𝑆 ) ) ) |
93 |
15 92
|
syl7 |
⊢ ( Tr 𝑆 → ( 𝑦 ∈ 𝑠 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑦 ∈ 𝑆 ) ) ) |
94 |
93
|
ad2antrr |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( 𝑦 ∈ 𝑠 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑦 ∈ 𝑆 ) ) ) |
95 |
90 94
|
jaod |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑦 ∈ 𝑆 ) ) ) |
96 |
95
|
com23 |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → 𝑦 ∈ 𝑆 ) ) ) |
97 |
96
|
rexlimdv |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( ∃ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → 𝑦 ∈ 𝑆 ) ) |
98 |
87 97
|
syld |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → 𝑦 ∈ 𝑆 ) ) |
99 |
82 98
|
mpd |
⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → 𝑦 ∈ 𝑆 ) |
100 |
99
|
ex |
⊢ ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) → ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑆 ) ) |
101 |
100
|
alrimiv |
⊢ ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑆 ) ) |